1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
|
static size_t compiler_sizeof(Type *t);
static bool eval_block(Evaluator *ev, Block *b, Type *t, Value *v);
static bool eval_expr(Evaluator *ev, Expression *e, Value *v);
static bool block_enter(Block *b, Statement *stmts, U32 flags);
static void block_exit(Block *b, Statement *stmts);
static void evalr_create(Evaluator *ev) {
allocr_create(&ev->allocr);
ev->returning = NULL;
ev->to_free = NULL;
}
static void evalr_free(Evaluator *ev) {
allocr_free_all(&ev->allocr);
typedef void *VoidPtr;
arr_foreach(ev->to_free, VoidPtr, f)
free(*f);
arr_clear(&ev->to_free);
}
static inline void *evalr_malloc(Evaluator *ev, size_t bytes) {
return allocr_malloc(&ev->allocr, bytes);
}
static inline void *evalr_calloc(Evaluator *ev, size_t n, size_t bytes) {
return allocr_calloc(&ev->allocr, n, bytes);
}
static size_t compiler_sizeof_builtin(BuiltinType b) {
switch (b) {
case BUILTIN_I8: return sizeof(I8);
case BUILTIN_U8: return sizeof(U8);
case BUILTIN_I16: return sizeof(I16);
case BUILTIN_U16: return sizeof(U16);
case BUILTIN_I32: return sizeof(I32);
case BUILTIN_U32: return sizeof(U32);
case BUILTIN_I64: return sizeof(I64);
case BUILTIN_U64: return sizeof(U64);
case BUILTIN_F32: return sizeof(F32);
case BUILTIN_F64: return sizeof(F64);
case BUILTIN_CHAR: return sizeof(char); /* = 1 */
case BUILTIN_BOOL: return sizeof(bool);
}
assert(0);
return 0;
}
static size_t compiler_alignof(Type *t) {
switch (t->kind) {
case TYPE_BUILTIN:
return compiler_sizeof_builtin(t->builtin);
case TYPE_VOID:
return 1;
case TYPE_FN:
return sizeof(FnExpr *);
case TYPE_PTR:
return sizeof(void *);
case TYPE_TUPLE:
return sizeof(Value *);
case TYPE_ARR:
return compiler_alignof(t->arr.of);
case TYPE_SLICE:
if (sizeof(void *) > sizeof(size_t))
return sizeof(void *);
else
return sizeof(size_t);
case TYPE_TYPE:
return sizeof(Type *);
case TYPE_USER:
return compiler_alignof(ident_typeval(t->user.name));
case TYPE_STRUCT: {
/* assume the align of a struct is (at most) the greatest align out of its children's */
size_t align = 1;
arr_foreach(t->struc.fields, Field, f) {
size_t falign = compiler_alignof(f->type);
if (falign > align) align = falign;
}
return align;
}
case TYPE_UNKNOWN:
break;
}
assert(0);
return 0;
}
/* finds offsets and size */
/* OPTIM: don't do this once per Type, but once per struct */
static void eval_struct_find_offsets(Type *t) {
assert(t->kind == TYPE_STRUCT);
if (!(t->flags & TYPE_FLAG_STRUCT_FOUND_OFFSETS)) {
size_t bytes = 0;
arr_foreach(t->struc.fields, Field, f) {
size_t falign = compiler_alignof(f->type);
/* align */
bytes += ((falign - bytes) % falign + falign) % falign; /* = -bytes mod falign */
assert(bytes % falign == 0);
f->offset = bytes;
/* add size */
bytes += compiler_sizeof(f->type);
}
/* final align */
size_t align = compiler_alignof(t);
bytes += ((align - bytes) % align + align) % align; /* = -bytes mod align */
t->struc.size = bytes;
t->flags |= TYPE_FLAG_STRUCT_FOUND_OFFSETS;
}
}
/* size of a type at compile time */
static size_t compiler_sizeof(Type *t) {
switch (t->kind) {
case TYPE_BUILTIN:
return compiler_sizeof_builtin(t->builtin);
case TYPE_FN:
return sizeof(FnExpr *);
case TYPE_PTR:
return sizeof(void *);
case TYPE_ARR:
return t->arr.n * compiler_sizeof(t->arr.of);
case TYPE_TUPLE:
return sizeof(Value *);
case TYPE_SLICE:
return sizeof(Slice);
case TYPE_TYPE:
return sizeof(Type *);
case TYPE_USER:
return compiler_sizeof(ident_typeval(t->user.name));
case TYPE_STRUCT: {
eval_struct_find_offsets(t);
return t->struc.size;
} break;
case TYPE_VOID:
case TYPE_UNKNOWN:
return 0;
}
assert(0);
return 0;
}
static bool builtin_truthiness(Value *v, BuiltinType b) {
switch (b) {
case BUILTIN_I8: return v->i8 != 0;
case BUILTIN_I16: return v->i16 != 0;
case BUILTIN_I32: return v->i32 != 0;
case BUILTIN_I64: return v->i64 != 0;
case BUILTIN_U8: return v->u8 != 0;
case BUILTIN_U16: return v->u16 != 0;
case BUILTIN_U32: return v->u32 != 0;
case BUILTIN_U64: return v->u64 != 0;
case BUILTIN_F32: return v->f32 != 0;
case BUILTIN_F64: return v->f64 != 0;
case BUILTIN_BOOL: return v->boolv;
case BUILTIN_CHAR: return v->charv != 0;
}
assert(0); return false;
}
static bool val_truthiness(Value *v, Type *t) {
switch (t->kind) {
case TYPE_VOID: return false;
case TYPE_UNKNOWN: assert(0); return false;
case TYPE_BUILTIN: return builtin_truthiness(v, t->builtin);
case TYPE_PTR: return v->ptr != NULL;
case TYPE_FN: return v->fn != NULL;
case TYPE_ARR: return t->arr.n > 0;
case TYPE_SLICE: return v->slice.n > 0;
case TYPE_USER:
case TYPE_TYPE:
case TYPE_TUPLE:
case TYPE_STRUCT:
break;
}
assert(0);
return false;
}
static I64 val_to_i64(Value *v, BuiltinType v_type) {
switch (v_type) {
case BUILTIN_I8: return (I64)v->i8;
case BUILTIN_I16: return (I64)v->i16;
case BUILTIN_I32: return (I64)v->i32;
case BUILTIN_I64: return (I64)v->i64;
case BUILTIN_U8: return (I64)v->u8;
case BUILTIN_U16: return (I64)v->u16;
case BUILTIN_U32: return (I64)v->u32;
case BUILTIN_U64: return (I64)v->u64;
default: break;
}
assert(0);
return 0;
}
static U64 val_to_u64(Value *v, BuiltinType v_type) {
if (v_type == BUILTIN_U64) return v->u64;
return (U64)val_to_i64(v, v_type);
}
static void i64_to_val(Value *v, BuiltinType v_type, I64 x) {
switch (v_type) {
case BUILTIN_I8:
v->i8 = (I8)x; break;
case BUILTIN_I16:
v->i16 = (I16)x; break;
case BUILTIN_I32:
v->i32 = (I32)x; break;
case BUILTIN_I64:
v->i64 = (I64)x; break;
case BUILTIN_U8:
v->u8 = (U8)x; break;
case BUILTIN_U16:
v->u16 = (U16)x; break;
case BUILTIN_U32:
v->u32 = (U32)x; break;
case BUILTIN_U64:
v->u64 = (U64)x; break;
default: assert(0); break;
}
}
static void u64_to_val(Value *v, BuiltinType v_type, U64 x) {
if (v_type == BUILTIN_U64)
v->u64 = x;
else
i64_to_val(v, v_type, (I64)x);
}
/*
IMPORTANT: Only pass an evaluator if you want it to use its allocator.
Otherwise, pass NULL.
*/
static void val_copy(Evaluator *ev, Value *dest, Value *src, Type *t) {
switch (t->kind) {
case TYPE_BUILTIN:
case TYPE_FN:
case TYPE_PTR:
case TYPE_SLICE:
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_TYPE:
*dest = *src;
break;
case TYPE_ARR: {
size_t bytes = t->arr.n * compiler_sizeof(t->arr.of);
if (ev)
dest->arr = evalr_malloc(ev, bytes);
else
dest->arr = err_malloc(bytes);
memcpy(dest->arr, src->arr, bytes);
} break;
case TYPE_TUPLE: {
size_t bytes = arr_len(t->tuple) * sizeof(*dest->tuple);
if (ev)
dest->tuple = evalr_malloc(ev, bytes);
else
dest->tuple = err_malloc(bytes);
memcpy(dest->tuple, src->tuple, bytes);
} break;
case TYPE_STRUCT: {
size_t bytes = compiler_sizeof(t);
if (ev)
dest->struc = evalr_malloc(ev, bytes);
else
dest->struc = err_malloc(bytes);
memcpy(dest->struc, src->struc, bytes);
} break;
case TYPE_USER:
val_copy(ev, dest, src, ident_typeval(t->user.name));
break;
}
}
static void *val_ptr_to_free(Value *v, Type *t) {
switch (t->kind) {
case TYPE_BUILTIN:
case TYPE_FN:
case TYPE_PTR:
case TYPE_SLICE:
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_TYPE:
return NULL;
case TYPE_ARR:
return v->arr;
case TYPE_TUPLE:
return v->tuple;
case TYPE_STRUCT:
return v->struc;
case TYPE_USER:
return val_ptr_to_free(v, ident_typeval(t->user.name));
}
assert(0); return NULL;
}
static void val_free(Value *v, Type *t) {
free(val_ptr_to_free(v, t));
}
#define builtin_casts_to_int(x) \
case BUILTIN_I8: \
vout->i8 = (I8)vin->x; break; \
case BUILTIN_I16: \
vout->i16 = (I16)vin->x; break; \
case BUILTIN_I32: \
vout->i32 = (I32)vin->x; break; \
case BUILTIN_I64: \
vout->i64 = (I64)vin->x; break; \
case BUILTIN_U8: \
vout->u8 = (U8)vin->x; break; \
case BUILTIN_U16: \
vout->u16 = (U16)vin->x; break; \
case BUILTIN_U32: \
vout->u32 = (U32)vin->x; break; \
case BUILTIN_U64: \
vout->u64 = (U64)vin->x; break
#define builtin_casts_to_num(x) \
builtin_casts_to_int(x); \
case BUILTIN_F32: \
vout->f32 = (F32)vin->x; break; \
case BUILTIN_F64: \
vout->f64 = (F64)vin->x; break
#define builtin_int_casts(low, up) \
case BUILTIN_##up: \
switch (to) { \
builtin_casts_to_num(low); \
case BUILTIN_CHAR: vout->charv = (char)vin->low; break; \
case BUILTIN_BOOL: vout->boolv = vin->low != 0; break; \
} break
#define builtin_float_casts(low, up) \
case BUILTIN_##up: \
switch (to) { \
builtin_casts_to_num(low); \
case BUILTIN_BOOL: vout->boolv = vin->low != 0.0f; break; \
case BUILTIN_CHAR: \
assert(0); break; \
} break
static void val_builtin_cast(Value *vin, BuiltinType from, Value *vout, BuiltinType to) {
if (from == to) {
*vout = *vin;
return;
}
switch (from) {
builtin_int_casts(i8, I8);
builtin_int_casts(i16, I16);
builtin_int_casts(i32, I32);
builtin_int_casts(i64, I64);
builtin_int_casts(u8, U8);
builtin_int_casts(u16, U16);
builtin_int_casts(u32, U32);
builtin_int_casts(u64, U64);
builtin_float_casts(f32, F32);
builtin_float_casts(f64, F64);
case BUILTIN_BOOL: vout->boolv = builtin_truthiness(vin, from); break;
case BUILTIN_CHAR:
switch (to) {
builtin_casts_to_int(charv);
case BUILTIN_CHAR: /* handled at top of func */
case BUILTIN_F32:
case BUILTIN_F64:
case BUILTIN_BOOL:
assert(0); break;
}
break;
}
}
static void val_cast(Value *vin, Type *from, Value *vout, Type *to) {
if (to->kind == TYPE_BUILTIN && to->builtin == BUILTIN_BOOL) {
vout->boolv = val_truthiness(vin, from);
return;
}
if (from->kind == TYPE_USER || to->kind == TYPE_USER) {
*vout = *vin;
return;
}
switch (from->kind) {
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_USER:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0); break;
case TYPE_BUILTIN:
switch (to->kind) {
case TYPE_BUILTIN:
val_builtin_cast(vin, from->builtin, vout, to->builtin);
break;
case TYPE_PTR:
switch (from->builtin) {
case BUILTIN_I8: vout->ptr = (void *)(U64)vin->i8; break;
case BUILTIN_I16: vout->ptr = (void *)(U64)vin->i16; break;
case BUILTIN_I32: vout->ptr = (void *)(U64)vin->i32; break;
case BUILTIN_I64: vout->ptr = (void *)(U64)vin->i64; break;
case BUILTIN_U8: vout->ptr = (void *)(U64)vin->u8; break;
case BUILTIN_U16: vout->ptr = (void *)(U64)vin->u16; break;
case BUILTIN_U32: vout->ptr = (void *)(U64)vin->u32; break;
case BUILTIN_U64: vout->ptr = (void *)(U64)vin->u64; break;
default: assert(0); break;
}
break;
case TYPE_USER:
case TYPE_STRUCT:
case TYPE_SLICE:
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_FN:
case TYPE_ARR:
case TYPE_TYPE:
assert(0);
break;
}
break;
case TYPE_FN:
switch (to->kind) {
case TYPE_PTR:
vout->ptr = (void *)vin->fn;
break;
case TYPE_FN:
vout->fn = vin->fn;
break;
case TYPE_USER:
*vout = *vin;
break;
case TYPE_SLICE:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_ARR:
case TYPE_BUILTIN:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0); break;
}
break;
case TYPE_PTR:
switch (to->kind) {
case TYPE_BUILTIN:
switch (to->builtin) {
builtin_casts_to_int(ptr);
case BUILTIN_BOOL:
case BUILTIN_CHAR:
case BUILTIN_F32:
case BUILTIN_F64:
assert(0); break;
}
break;
case TYPE_ARR:
vout->arr = vin->ptr;
break;
case TYPE_PTR:
vout->ptr = vin->ptr;
break;
case TYPE_FN:
vout->fn = vin->ptr;
break;
case TYPE_USER:
*vout = *vin;
break;
case TYPE_SLICE:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0);
break;
}
break;
case TYPE_ARR:
switch (to->kind) {
case TYPE_PTR:
vout->ptr = vin->arr;
break;
case TYPE_ARR:
vout->arr = vin->arr;
break;
case TYPE_USER:
*vout = *vin;
break;
case TYPE_SLICE:
case TYPE_FN:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_BUILTIN:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0); break;
}
break;
case TYPE_SLICE:
switch (to->kind) {
case TYPE_PTR:
vout->ptr = vin->slice.data;
break;
case TYPE_ARR:
vout->arr = vin->slice.data;
break;
case TYPE_SLICE:
vout->slice = vin->slice;
break;
case TYPE_USER:
*vout = *vin;
break;
case TYPE_FN:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_BUILTIN:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0); break;
}
break;
}
}
/* type is the underlying type, not the pointer type. */
static void eval_deref(Value *v, void *ptr, Type *type) {
switch (type->kind) {
case TYPE_PTR: v->ptr = *(void **)ptr; break;
case TYPE_ARR: v->arr = ptr; break; /* when we have a pointer to an array, it points directly to the data in that array. */
case TYPE_STRUCT: v->struc = ptr; break; /* same for structs */
case TYPE_FN: v->fn = *(FnExpr **)ptr; break;
case TYPE_TUPLE: v->tuple = *(Value **)ptr; break;
case TYPE_BUILTIN:
switch (type->builtin) {
case BUILTIN_I8: v->i8 = *(I8 *)ptr; break;
case BUILTIN_U8: v->u8 = *(U8 *)ptr; break;
case BUILTIN_I16: v->i16 = *(I16 *)ptr; break;
case BUILTIN_U16: v->u16 = *(U16 *)ptr; break;
case BUILTIN_I32: v->i32 = *(I32 *)ptr; break;
case BUILTIN_U32: v->u32 = *(U32 *)ptr; break;
case BUILTIN_I64: v->i64 = *(I64 *)ptr; break;
case BUILTIN_U64: v->u64 = *(U64 *)ptr; break;
case BUILTIN_F32: v->f32 = *(F32 *)ptr; break;
case BUILTIN_F64: v->f64 = *(F64 *)ptr; break;
case BUILTIN_CHAR: v->charv = *(char *)ptr; break;
case BUILTIN_BOOL: v->boolv = *(bool *)ptr; break;
}
break;
case TYPE_SLICE:
v->slice = *(Slice *)ptr;
break;
case TYPE_TYPE:
v->type = *(Type **)ptr;
break;
case TYPE_USER:
eval_deref(v, ptr, ident_typeval(type->user.name));
break;
case TYPE_VOID:
case TYPE_UNKNOWN:
assert(0);
break;
}
}
/* inverse of eval_deref */
static void eval_deref_set(void *set, Value *to, Type *type) {
switch (type->kind) {
case TYPE_PTR: *(void **)set = to->ptr; break;
case TYPE_ARR: memcpy(set, to->arr, compiler_sizeof(type)); break; /* TODO: test this */
case TYPE_STRUCT: memcpy(set, to->struc, compiler_sizeof(type)); break;
case TYPE_FN: *(FnExpr **)set = to->fn; break;
case TYPE_TUPLE: *(Value **)set = to->tuple; break;
case TYPE_BUILTIN:
switch (type->builtin) {
case BUILTIN_I8: *(I8 *)set = to->i8; break;
case BUILTIN_U8: *(U8 *)set = to->u8; break;
case BUILTIN_I16: *(I16 *)set = to->i16; break;
case BUILTIN_U16: *(U16 *)set = to->u16; break;
case BUILTIN_I32: *(I32 *)set = to->i32; break;
case BUILTIN_U32: *(U32 *)set = to->u32; break;
case BUILTIN_I64: *(I64 *)set = to->i64; break;
case BUILTIN_U64: *(U64 *)set = to->u64; break;
case BUILTIN_F32: *(F32 *)set = to->f32; break;
case BUILTIN_F64: *(F64 *)set = to->f64; break;
case BUILTIN_CHAR: *(char *)set = to->charv; break;
case BUILTIN_BOOL: *(bool *)set = to->boolv; break;
}
break;
case TYPE_SLICE:
*(Slice *)set = to->slice;
break;
case TYPE_TYPE:
*(Type **)set = to->type;
break;
case TYPE_USER:
eval_deref_set(set, to, ident_typeval(type->user.name));
break;
case TYPE_VOID:
case TYPE_UNKNOWN:
assert(0);
break;
}
}
static bool eval_val_ptr_at_index(Evaluator *ev, Location where, Value *arr, U64 i, Type *arr_type, Type *idx_type, void **ptr, Type **type) {
switch (arr_type->kind) {
case TYPE_ARR: {
U64 arr_sz = arr_type->arr.n;
if (i >= arr_sz) {
err_print(where, "Array out of bounds (%lu, array size = %lu)\n", (unsigned long)i, (unsigned long)arr_sz);
return false;
}
*ptr = (char *)arr->arr + compiler_sizeof(arr_type->arr.of) * i;
if (type) *type = arr_type->arr.of;
} break;
case TYPE_SLICE: {
U64 slice_sz = arr->slice.n;
if (i >= slice_sz) {
err_print(where, "Slice out of bounds (%lu, slice size = %lu)\n", (unsigned long)i, (unsigned long)slice_sz);
return false;
}
*ptr = (char *)arr->slice.data + compiler_sizeof(arr_type->slice) * i;
if (type) *type = arr_type->slice;
} break;
default: assert(0); break;
}
return true;
}
static bool eval_expr_ptr_at_index(Evaluator *ev, Expression *e, void **ptr, Type **type) {
Value arr;
if (!eval_expr(ev, e->binary.lhs, &arr)) return false;
Value index;
if (!eval_expr(ev, e->binary.rhs, &index)) return false;
Type *ltype = &e->binary.lhs->type;
Type *rtype = &e->binary.rhs->type;
U64 i;
assert(rtype->kind == TYPE_BUILTIN);
if (rtype->builtin == BUILTIN_U64) {
i = index.u64;
} else {
I64 signed_index = val_to_i64(&index, rtype->builtin);
if (signed_index < 0) {
err_print(e->where, "Array or slice out of bounds (index = %ld)\n", (long)signed_index);
return false;
}
i = (U64)signed_index;
}
return eval_val_ptr_at_index(ev, e->where, &arr, i, ltype, rtype, ptr, type);
}
static bool eval_set(Evaluator *ev, Expression *set, Value *to) {
switch (set->kind) {
case EXPR_IDENT: {
IdentDecl *id = ident_decl(set->ident);
if (!(id->flags & IDECL_FLAG_HAS_VAL)) {
err_print(set->where, "Cannot set value of run time variable at compile time.");
return false;
}
id->val = *to;
} break;
case EXPR_UNARY_OP:
switch (set->unary.op) {
case UNARY_DEREF: {
Value ptr;
if (!eval_expr(ev, set->unary.of, &ptr)) return false;
eval_deref_set(ptr.ptr, to, &set->type);
} break;
default: assert(0); break;
}
break;
case EXPR_BINARY_OP:
switch (set->binary.op) {
case BINARY_AT_INDEX: {
void *ptr;
Type *type;
/* get pointer to x[i] */
if (!eval_expr_ptr_at_index(ev, set, &ptr, &type))
return false;
/* set it to to */
eval_deref_set(ptr, to, type);
} break;
default: break;
}
break;
case EXPR_TUPLE:
for (size_t i = 0; i < arr_len(set->tuple); i++) {
if (!eval_set(ev, &set->tuple[i], &to->tuple[i]))
return false;
}
break;
default:
assert(0);
break;
}
return true;
}
static bool eval_expr(Evaluator *ev, Expression *e, Value *v) {
/* WARNING: macros ahead */
#define eval_unary_op_one(low, up, op) \
case BUILTIN_##up: \
v->low = (up)(op of.low); break
#define eval_unary_op_nums(builtin, op) \
eval_unary_op_one(i8, I8, op); \
eval_unary_op_one(i16, I16, op); \
eval_unary_op_one(i32, I32, op); \
eval_unary_op_one(i64, I64, op); \
eval_unary_op_one(u8, U8, op); \
eval_unary_op_one(u16, U16, op); \
eval_unary_op_one(u32, U32, op); \
eval_unary_op_one(u64, U64, op); \
eval_unary_op_one(f32, F32, op); \
eval_unary_op_one(f64, F64, op);
#define eval_unary_op_nums_only(op) \
switch (builtin) { \
eval_unary_op_nums(builtin, op); \
default: assert(0); break; \
}
#define eval_binary_op_one(low, up, op) \
case BUILTIN_##up: \
v->low = (up)(lhs.low op rhs.low); break
#define eval_binary_op_nums(builtin, op) \
eval_binary_op_one(i8, I8, op); \
eval_binary_op_one(i16, I16, op); \
eval_binary_op_one(i32, I32, op); \
eval_binary_op_one(i64, I64, op); \
eval_binary_op_one(u8, U8, op); \
eval_binary_op_one(u16, U16, op); \
eval_binary_op_one(u32, U32, op); \
eval_binary_op_one(u64, U64, op); \
eval_binary_op_one(f32, F32, op); \
eval_binary_op_one(f64, F64, op)
#define eval_binary_op_nums_only(op) \
val_cast(&lhs, &e->binary.lhs->type, &lhs, &e->type); \
val_cast(&rhs, &e->binary.rhs->type, &rhs, &e->type); \
assert(e->type.kind == TYPE_BUILTIN); \
switch (builtin) { \
eval_binary_op_nums(builtin, op); \
default: assert(0); break; \
}
#define eval_binary_bool_op_one(low, up, op) \
case BUILTIN_##up: \
v->boolv = lhs.low op rhs.low; break
#define eval_binary_bool_op_nums(builtin, op) \
eval_binary_bool_op_one(i8, I8, op); \
eval_binary_bool_op_one(i16, I16, op); \
eval_binary_bool_op_one(i32, I32, op); \
eval_binary_bool_op_one(i64, I64, op); \
eval_binary_bool_op_one(u8, U8, op); \
eval_binary_bool_op_one(u16, U16, op); \
eval_binary_bool_op_one(u32, U32, op); \
eval_binary_bool_op_one(u64, U64, op); \
eval_binary_bool_op_one(f32, F32, op); \
eval_binary_bool_op_one(f64, F64, op); \
eval_binary_bool_op_one(boolv, BOOL, op); \
eval_binary_bool_op_one(charv, CHAR, op);
#define eval_binary_bool_op_nums_only(op) \
{Type *ltype=&e->binary.lhs->type, \
*rtype=&e->binary.rhs->type; \
Type *cast_to = ltype->flags & TYPE_FLAG_FLEXIBLE ? \
rtype : ltype; \
val_cast(&lhs, ltype, &lhs, cast_to); \
val_cast(&rhs, rtype, &rhs, cast_to); \
assert(e->binary.lhs->type.kind == TYPE_BUILTIN); \
switch (builtin) { \
eval_binary_bool_op_nums(builtin, op); \
default: \
assert(!("Invalid builtin to "#op)[0]); break; \
}}
#define eval_binary_bool_op(op) \
if (e->binary.lhs->type.kind == TYPE_PTR) \
v->boolv = lhs.ptr op rhs.ptr; \
else { eval_binary_bool_op_nums_only(op); }
switch (e->kind) {
case EXPR_UNARY_OP: {
Value of;
if (e->unary.op != UNARY_ADDRESS) {
if (!eval_expr(ev, e->unary.of, &of)) return false;
}
switch (e->unary.op) {
case UNARY_ADDRESS: {
Expression *o = e->unary.of;
if (o->type.kind == TYPE_TYPE) {
if (!eval_expr(ev, e->unary.of, &of)) return false;
/* "address" of type (pointer to type) */
v->type = evalr_calloc(ev, 1, sizeof *v->type); /* TODO: this might be bad in the future; should free this at some point */
/* v->type->flags = 0; */
v->type->kind = TYPE_PTR;
v->type->ptr = of.type;
break;
}
switch (o->kind) {
case EXPR_IDENT: {
IdentDecl *id = ident_decl(o->ident);
if (!(id->flags & IDECL_FLAG_HAS_VAL)) {
err_print(e->where, "Cannot take address of run time variable at compile time.");
return false;
}
if (o->type.kind == TYPE_ARR)
v->ptr = id->val.arr; /* point directly to data */
else
v->ptr = &id->val;
} break;
case EXPR_UNARY_OP:
switch (o->unary.op) {
case UNARY_DEREF: {
Value ptr;
if (!eval_expr(ev, o, &ptr)) return false;
v->ptr = ptr.ptr;
} break;
default: assert(0); break;
}
break;
case EXPR_BINARY_OP:
switch (o->binary.op) {
case BINARY_AT_INDEX: {
void *ptr;
if (!eval_expr_ptr_at_index(ev, o, &ptr, NULL))
return false;
v->ptr = ptr;
} break;
default: break;
}
break;
default:
assert(0);
break;
}
} break;
case UNARY_DEREF:
eval_deref(v, of.ptr, &e->type);
break;
case UNARY_MINUS: {
BuiltinType builtin = e->type.builtin;
assert(e->type.kind == TYPE_BUILTIN);
eval_unary_op_nums_only(-);
} break;
case UNARY_NOT:
v->boolv = !val_truthiness(v, &e->unary.of->type);
break;
case UNARY_DEL:
if (e->unary.of->type.kind == TYPE_PTR)
free(of.ptr);
else {
assert(e->unary.of->type.kind == TYPE_SLICE);
free(of.slice.data);
}
break;
}
} break;
case EXPR_BINARY_OP: {
Value lhs, rhs;
/* TODO(eventually): short-circuiting */
if (e->binary.op != BINARY_SET)
if (!eval_expr(ev, e->binary.lhs, &lhs)) return false;
if (!eval_expr(ev, e->binary.rhs, &rhs)) return false;
BuiltinType builtin = e->binary.lhs->type.builtin;
switch (e->binary.op) {
case BINARY_ADD:
if (e->binary.lhs->type.kind == TYPE_PTR) {
v->ptr = (char *)lhs.ptr + val_to_i64(&rhs, e->binary.rhs->type.builtin)
* (I64)compiler_sizeof(e->binary.lhs->type.ptr);
} else {
eval_binary_op_nums_only(+);
}
break;
case BINARY_SUB:
if (e->binary.lhs->type.kind == TYPE_PTR) {
v->ptr = (char *)lhs.ptr - val_to_i64(&rhs, e->binary.rhs->type.builtin)
* (I64)compiler_sizeof(e->binary.lhs->type.ptr);
} else {
eval_binary_op_nums_only(-);
}
break;
case BINARY_MUL:
eval_binary_op_nums_only(*); break;
case BINARY_DIV:
eval_binary_op_nums_only(/); break;
case BINARY_LT:
eval_binary_bool_op(<); break;
case BINARY_LE:
eval_binary_bool_op(<=); break;
case BINARY_GT:
eval_binary_bool_op(>); break;
case BINARY_GE:
eval_binary_bool_op(>=); break;
case BINARY_EQ:
eval_binary_bool_op(==); break;
case BINARY_NE:
eval_binary_bool_op(!=); break;
case BINARY_SET:
if (!eval_set(ev, e->binary.lhs, &rhs)) return false;
break;
case BINARY_AT_INDEX: {
void *ptr;
Type *type;
eval_expr_ptr_at_index(ev, e, &ptr, &type);
eval_deref(v, ptr, type);
} break;
}
} break;
case EXPR_LITERAL_INT:
assert(e->type.kind == TYPE_BUILTIN);
u64_to_val(v, e->type.builtin, e->intl);
break;
case EXPR_LITERAL_FLOAT:
assert(e->type.kind == TYPE_BUILTIN);
if (e->type.builtin == BUILTIN_F32) {
v->f32 = (F32)e->floatl;
} else if (e->type.builtin == BUILTIN_F64) {
v->f64 = (F64)e->floatl;
} else {
assert(0);
}
break;
case EXPR_IF: {
IfExpr *i = &e->if_;
if (i->cond) {
Value cond;
if (!eval_expr(ev, i->cond, &cond)) return false;
if (val_truthiness(&cond, &i->cond->type)) {
if (!eval_block(ev, &i->body, &e->type, v)) return false;
} else if (i->next_elif) {
if (!eval_expr(ev, i->next_elif, v)) return false;
}
} else {
if (!eval_block(ev, &i->body, &e->type, v)) return false;
}
} break;
case EXPR_WHILE: {
Value cond;
WhileExpr *w = &e->while_;
while (1) {
if (w->cond) {
if (!eval_expr(ev, w->cond, &cond)) return false;
if (!val_truthiness(&cond, &w->cond->type))
break;
}
if (!eval_block(ev, &w->body, &e->type, v)) return false;
}
} break;
case EXPR_BLOCK:
if (!eval_block(ev, &e->block, &e->type, v)) return false;
break;
case EXPR_LITERAL_BOOL:
v->boolv = e->booll;
break;
case EXPR_LITERAL_CHAR:
v->charv = e->charl;
break;
case EXPR_LITERAL_STR:
v->slice.data = e->strl.str;
v->slice.n = e->strl.len;
break;
case EXPR_CAST: {
Value casted;
if (!eval_expr(ev, e->cast.expr, &casted)) return false;
val_cast(&casted, &e->cast.expr->type, v, &e->cast.type);
} break;
case EXPR_FN:
v->fn = &e->fn;
break;
case EXPR_IDENT: {
IdentDecl *idecl = ident_decl(e->ident);
Declaration *d = idecl->decl;
if (idecl->flags & IDECL_FLAG_HAS_VAL) {
*v = idecl->val;
} else if (d->flags & DECL_FLAG_CONST) {
if (!(d->flags & DECL_FLAG_FOUND_VAL)) {
if (!eval_expr(ev, &d->expr, &d->val)) return false;
d->flags |= DECL_FLAG_FOUND_VAL;
}
long index = 0;
arr_foreach(d->idents, Identifier, decl_i) {
if (*decl_i == e->ident) {
break;
}
index++;
assert(index < (long)arr_len(d->idents)); /* identifier got its declaration set to here, but it's not here */
}
if (e->type.kind == TYPE_TYPE) {
/* set v to a user type, not the underlying type */
v->type = evalr_malloc(ev, sizeof *v->type); /* TODO: fix this (free eventually) */
v->type->flags = 0;
v->type->kind = TYPE_USER;
v->type->user.name = d->idents[index];
} else {
*v = d->type.kind == TYPE_TUPLE ? d->val.tuple[index] : d->val;
}
} else {
char *s = ident_to_str(e->ident);
err_print(e->where, "Cannot evaluate non-constant '%s' at compile time.", s);
free(s);
return false;
}
} break;
case EXPR_TUPLE: {
size_t i, n = arr_len(e->tuple);
v->tuple = err_malloc(n * sizeof *v->tuple);
*(void **)arr_add(&ev->to_free) = v->tuple;
for (i = 0; i < n; i++) {
if (!eval_expr(ev, &e->tuple[i], &v->tuple[i]))
return false;
}
} break;
case EXPR_DIRECT: {
DirectExpr *d = &e->direct;
switch (d->which) {
case DIRECT_C:
err_print(e->where, "Cannot run C code at compile time.");
return false;
case DIRECT_COUNT: assert(0); return false;
}
} break;
case EXPR_NEW:
/* it's not strictly necessary to do the if here */
if (e->new.n) {
Value n;
if (!eval_expr(ev, e->new.n, &n))
return false;
U64 n64 = val_to_u64(&n, e->new.n->type.builtin);
v->slice.data = err_calloc(n64, compiler_sizeof(&e->new.type));
v->slice.n = n64;
} else {
v->ptr = err_calloc(1, compiler_sizeof(&e->new.type));
}
break;
case EXPR_CALL: {
Value fnv;
if (!eval_expr(ev, e->call.fn, &fnv))
return false;
FnExpr *fn = fnv.fn;
/* set parameter declaration values */
Declaration *params = fn->params;
/* OPTIM (NOTE: currently needed for recursion) */
Value *args = NULL;
arr_resv(&args, arr_len(e->call.arg_exprs));
for (size_t i = 0; i < arr_len(e->call.arg_exprs); i++) {
if (!eval_expr(ev, &e->call.arg_exprs[i], &args[i]))
return false;
}
fn_enter(fn, 0);
long arg = 0;
arr_foreach(params, Declaration, p) {
arr_foreach(p->idents, Identifier, i) {
IdentDecl *id = ident_decl(*i);
id->val = args[arg];
id->flags |= IDECL_FLAG_HAS_VAL;
arg++;
}
}
arr_clear(&args);
if (!eval_block(ev, &fn->body, &e->type, v)) {
fn_exit(fn);
return false;
}
if (ev->returning) {
*v = ev->ret_val;
ev->returning = false;
}
fn_exit(fn);
} break;
case EXPR_SLICE: {
SliceExpr *s = &e->slice;
Value ofv;
Type *of_type = &s->of->type;
if (!eval_expr(ev, s->of, &ofv))
return false;
U64 n = of_type->kind == TYPE_ARR ? of_type->arr.n : ofv.slice.n;
U64 from, to;
if (s->from) {
Value fromv;
if (!eval_expr(ev, s->from, &fromv))
return false;
assert(s->from->type.kind == TYPE_BUILTIN);
from = val_to_u64(&fromv, s->from->type.builtin);
} else {
from = 0;
}
if (s->to) {
Value tov;
if (!eval_expr(ev, s->to, &tov))
return false;
assert(s->to->type.kind == TYPE_BUILTIN);
to = val_to_u64(&tov, s->to->type.builtin);
} else {
to = n - 1;
}
/* TODO: is this the best check? (Go also checks if from > to) */
if (to > n) {
err_print(e->where, "Slice index out of bounds (to = %lu, length = %lu).", (unsigned long)to, (unsigned long)n);
return false;
}
void *ptr1, *ptr2;
if (from < to) {
if (!eval_val_ptr_at_index(ev, e->where, &ofv, from, of_type, &s->from->type, &ptr1, NULL))
return false;
if (!eval_val_ptr_at_index(ev, e->where, &ofv, to, of_type, &s->to->type, &ptr2, NULL))
return false;
v->slice.data = ptr1;
v->slice.n = to - from;
} else {
v->slice.data = NULL;
v->slice.n = 0;
}
} break;
case EXPR_TYPE:
v->type = &e->typeval;
}
return true;
}
static bool eval_decl(Evaluator *ev, Declaration *d) {
Value val = {0};
int has_expr = d->flags & DECL_FLAG_HAS_EXPR;
if (has_expr) {
if (d->flags & DECL_FLAG_CONST) {
if (!(d->flags & DECL_FLAG_FOUND_VAL)) {
if (!eval_expr(ev, &d->expr, &d->val))
return false;
d->flags |= DECL_FLAG_FOUND_VAL;
}
val = d->val;
} else {
if (!eval_expr(ev, &d->expr, &val))
return false;
}
}
long index = 0;
arr_foreach(d->idents, Identifier, i) {
IdentDecl *id = ident_decl(*i);
if (has_expr && d->type.kind == TYPE_TUPLE) {
val_copy(d->flags & DECL_FLAG_CONST ? ev : NULL, &id->val, &val.tuple[index], &d->type.tuple[index]);
index++;
} else if (!has_expr && d->type.kind == TYPE_ARR) {
/* "stack" array */
id->val.arr = err_calloc(d->type.arr.n, compiler_sizeof(d->type.arr.of));
} else {
val_copy(d->flags & DECL_FLAG_CONST ? ev : NULL, &id->val, &val, &d->type);
}
id->flags |= IDECL_FLAG_HAS_VAL;
}
if (has_expr && d->expr.kind == EXPR_TUPLE) {
val_free(&val, &d->type); /* free the tuple */
}
return true;
}
static bool eval_stmt(Evaluator *ev, Statement *stmt) {
switch (stmt->kind) {
case STMT_DECL:
if (!eval_decl(ev, &stmt->decl)) return false;
break;
case STMT_EXPR: {
Value unused;
if (!eval_expr(ev, &stmt->expr, &unused))
return false;
} break;
case STMT_RET: {
Value r;
if (!eval_expr(ev, &stmt->ret.expr, &r))
return false;
val_copy(NULL, &ev->ret_val, &r, &stmt->ret.expr.type);
} break;
}
return true;
}
/* t is the type of the block. */
static bool eval_block(Evaluator *ev, Block *b, Type *t, Value *v) {
void **prev_to_free = ev->to_free;
ev->to_free = NULL;
block_enter(b, b->stmts, 0);
arr_foreach(b->stmts, Statement, stmt) {
if (!eval_stmt(ev, stmt))
return false;
if (ev->returning) break;
}
if (!ev->returning && b->ret_expr) {
Value r;
if (!eval_expr(ev, b->ret_expr, &r))
return false;
/* make a copy so that r's data isn't freed when we exit the block */
val_copy(NULL, v, &r, &b->ret_expr->type);
void *free_ptr = val_ptr_to_free(v, t);
if (free_ptr)
*(void **)arr_add(&prev_to_free) = free_ptr;
}
block_exit(b, b->stmts);
typedef void *VoidPtr;
arr_foreach(ev->to_free, VoidPtr, f) {
free(*f);
}
arr_clear(&ev->to_free);
ev->to_free = prev_to_free;
return true;
}
|