1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
/* OPTIM: is it faster to store void *end? */
typedef struct {
size_t len;
size_t cap;
max_align_t data[];
} ArrHeader;
static inline ArrHeader *arr_hdr(void *arr) {
ArrHeader *hdr = (ArrHeader *)((char *)arr - offsetof(ArrHeader, data));
return hdr;
}
static inline size_t arr_len(void *arr) {
if (arr == NULL) return 0;
return arr_hdr(arr)->len;
}
static void arr_resv_(void **arr, size_t n, size_t item_sz) {
if (*arr == NULL) {
ArrHeader *hdr = err_malloc(item_sz * n + sizeof(ArrHeader) + 1); /* +1 => prevent ptr overflow */
hdr->len = 0;
hdr->cap = n;
*arr = hdr->data;
} else {
ArrHeader *hdr = arr_hdr(*arr);
hdr->cap = n;
hdr = err_realloc(hdr, item_sz * n + sizeof(ArrHeader) + 1);
if (hdr->len > hdr->cap) hdr->len = hdr->cap;
*arr = hdr->data;
}
}
static void arr_resva_(void **arr, size_t n, size_t item_sz, Allocator *a) {
if (*arr == NULL) {
ArrHeader *hdr = allocr_realloc(a, NULL, item_sz * n + sizeof(ArrHeader)); /* +1 => prevent ptr overflow */
hdr->len = 0;
hdr->cap = n;
*arr = hdr->data;
} else {
ArrHeader *hdr = arr_hdr(*arr);
hdr->cap = n;
hdr = allocr_realloc(a, hdr, item_sz * n + sizeof(ArrHeader));
if (hdr->len > hdr->cap) hdr->len = hdr->cap;
*arr = hdr->data;
}
}
static void arr_set_len_(void **arr, size_t n, size_t item_sz) {
arr_resv_(arr, n, item_sz);
arr_hdr(arr)->len = n;
}
static void arr_set_lena_(void **arr, size_t n, size_t item_sz, Allocator *a) {
arr_resva_(arr, n, item_sz, a);
arr_hdr(arr)->len = n;
}
static void *arr_add_(void **arr, size_t item_sz) {
ArrHeader *hdr;
if (*arr == NULL) {
arr_resv_(arr, 10, item_sz);
hdr = arr_hdr(*arr);
} else {
hdr = arr_hdr(*arr);
if (hdr->len >= hdr->cap) {
arr_resv_(arr, hdr->len * 2, item_sz);
hdr = arr_hdr(*arr);
}
}
return &(((char *)hdr->data)[(hdr->len++) * item_sz]);
}
static void *arr_adda_(void **arr, size_t item_sz, Allocator *a) {
ArrHeader *hdr;
if (*arr == NULL) {
arr_resva_(arr, 10, item_sz, a);
hdr = arr_hdr(*arr);
} else {
hdr = arr_hdr(*arr);
if (hdr->len >= hdr->cap) {
arr_resva_(arr, hdr->len * 2, item_sz, a);
hdr = arr_hdr(*arr);
}
}
return &(((char *)hdr->data)[(hdr->len++) * item_sz]);
}
static void arr_clear_(void **arr) {
if (*arr) {
free(arr_hdr(*arr));
*arr = NULL;
}
}
static void *arr_last_(void *arr, size_t item_sz) {
if (arr) {
ArrHeader *hdr = arr_hdr(arr);
return hdr->len == 0 ? NULL : (char *)hdr->data + (hdr->len-1) * item_sz;
} else {
return NULL;
}
}
/* OPTIM: shrink array */
static void arr_remove_last_(void **arr, size_t item_sz) {
arr_hdr(*arr)->len--; (void)item_sz;
}
#define arr_add(arr) arr_add_((void **)(arr), sizeof **(arr))
#define arr_adda(arr, allocr) arr_adda_((void **)(arr), sizeof **(arr), allocr)
#define arr_resv(arr, n) arr_resv_((void **)(arr), n, sizeof **(arr))
#define arr_resva(arr, n, allocr) arr_resva_((void **)(arr), n, sizeof **(arr), allocr)
#define arr_set_len(arr, n) arr_set_len_((void **)(arr), n, sizeof **(arr))
#define arr_set_lena(arr, n, a) arr_set_lena_((void **)(arr), n, sizeof **(arr), a)
#define arr_clear(arr) arr_clear_((void **)(arr))
#define arr_last(arr) arr_last_((void *)(arr), sizeof *(arr))
#define arr_foreach(arr, type, var) for (type *var = arr_len(arr) ? arr : NULL, *var##_foreach_end = arr_last(arr); var; var == var##_foreach_end ? var = NULL : var++)
#define arr_remove_last(arr) arr_remove_last_((void **)(arr), sizeof **(arr))
static void arr_test(void) {
int *foos = NULL;
for (int i = 0; i < 1000; i++) {
*(int *)arr_add(&foos) = i;
}
for (int i = 0; i < (int)arr_len(foos); i++) {
assert(foos[i] == i);
}
int lastx = -1;
arr_foreach(foos, int, x) {
assert(*x == lastx + 1);
lastx = *x;
}
arr_clear(&foos);
}
|