blob: 53941d2bfb608644cba2983066eb7c9c62489203 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
#ifndef UNICODE_H_
#define UNICODE_H_
#define UNICODE_BOX_CHARACTER 0x2610
#define UNICODE_CODE_POINTS 0x110000 // number of Unicode code points
static bool unicode_is_start_of_code_point(u8 byte) {
// see https://en.wikipedia.org/wiki/UTF-8#Encoding
// continuation bytes are of the form 10xxxxxx
return (byte & 0xC0) != 0x80;
}
// A lot like mbrtoc32. Doesn't depend on the locale though, for one thing.
// *c will be filled with the next UTF-8 code point in `str`. `bytes` refers to the maximum
// number of bytes that can be read from `str`.
// Returns:
// 0 - if a NULL character was encountered
// (size_t)-1 - on invalid UTF-8 / incomplete code point
// other - the number of bytes read from `str`.
static size_t unicode_utf8_to_utf32(char32_t *c, char const *str, size_t bytes) {
if (bytes == 0) {
*c = 0;
return 0;
}
// it's easier to do things with unsigned integers
u8 const *p = (u8 const *)str;
u8 first_byte = *p;
if (first_byte & 0x80) {
if ((first_byte & 0xE0) == 0xC0) {
// two-byte code point
if (bytes >= 2) {
++p;
u32 second_byte = *p;
u32 value = ((u32)first_byte & 0x1F) << 6
| (second_byte & 0x3F);
*c = (char32_t)value;
return 2;
} else {
// incomplete code point
*c = 0;
return (size_t)-1;
}
}
if ((first_byte & 0xF0) == 0xE0) {
// three-byte code point
if (bytes >= 3) {
++p;
u32 second_byte = *p;
++p;
u32 third_byte = *p;
u32 value = ((u32)first_byte & 0x0F) << 12
| (second_byte & 0x3F) << 6
| (third_byte & 0x3F);
if (value < 0xD800 || value > 0xDFFF) {
*c = (char32_t)value;
return 3;
} else {
// reserved for UTF-16 surrogate halves
*c = 0;
return (size_t)-1;
}
} else {
// incomplete
*c = 0;
return (size_t)-1;
}
}
if ((first_byte & 0xF8) == 0xF0) {
// four-byte code point
if (bytes >= 4) {
++p;
u32 second_byte = *p;
++p;
u32 third_byte = *p;
++p;
u32 fourth_byte = *p;
u32 value = ((u32)first_byte & 0x07) << 18
| (second_byte & 0x3F) << 12
| (third_byte & 0x3F) << 6
| (fourth_byte & 0x3F);
if (value <= 0x10FFFF) {
*c = (char32_t)value;
return 4;
} else {
// Code points this big can't be encoded by UTF-16 and so are invalid UTF-8.
*c = 0;
return (size_t)-1;
}
} else {
// incomplete
*c = 0;
return (size_t)-1;
}
}
// invalid UTF-8
*c = 0;
return (size_t)-1;
} else {
// ASCII character
if (first_byte == 0) {
*c = 0;
return 0;
}
*c = first_byte;
return 1;
}
}
// A lot like c32rtomb
// Converts a UTF-32 codepoint to a UTF-8 string. Writes at most 4 bytes to s.
// NOTE: It is YOUR JOB to null-terminate your string if the UTF-32 isn't null-terminated!
// Returns the number of bytes written to s, or (size_t)-1 on invalid UTF-32.
static size_t unicode_utf32_to_utf8(char *s, char32_t c32) {
u8 *p = (u8 *)s;
if (c32 <= 0x7F) {
// ASCII
*p = (u8)c32;
return 1;
} else if (c32 <= 0x7FF) {
// two bytes needed
*p++ = (u8)(0xC0 | (c32 >> 6));
*p = (u8)(0x80 | (c32 & 0x3F));
return 2;
} else if (c32 <= 0x7FFF) {
if (c32 < 0xD800 || c32 > 0xDFFF) {
*p++ = (u8)(0xE0 | ( c32 >> 12));
*p++ = (u8)(0x80 | ((c32 >> 6) & 0x3F));
*p = (u8)(0x80 | ( c32 & 0x3F));
return 3;
} else {
// UTF-16 surrogate halves
*p = 0;
return (size_t)-1;
}
} else if (c32 <= 0x10FFFF) {
*p++ = (u8)(0xF0 | ( c32 >> 18));
*p++ = (u8)(0x80 | ((c32 >> 12) & 0x3F));
*p++ = (u8)(0x80 | ((c32 >> 6) & 0x3F));
*p = (u8)(0x80 | ( c32 & 0x3F));
return 4;
} else {
// code point too big
*p = 0;
return (size_t)-1;
}
}
#endif // UNICODE_H_
|