summaryrefslogtreecommitdiff
path: root/platforms.cpp
blob: 8658aae8b46bbe446adcdfd58f2469a8bcf0b28f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#define PLATFORM_RADIUS_MIN 0.2f
#define PLATFORM_RADIUS_MAX 5.0f
#define PLATFORM_MOVE_SPEED_MIN 0.1f
#define PLATFORM_MOVE_SPEED_MAX 5.0f
#define PLATFORM_ROTATE_SPEED_MIN -3.0f
#define PLATFORM_ROTATE_SPEED_MAX +3.0f

// additional cost for each additional meter of platform radius
#define PLATFORM_RADIUS_COST 1.0f
#define PLATFORM_MOVE_SPEED_COST 1.0f
#define PLATFORM_ROTATE_SPEED_COST 1.0f

// how far right could any part of this platform possibly go?
static float platform_rightmost_x(Platform const *platform) {
	float angle;
	if (platform->rotates)
		angle = 0; // for rotating platforms, the maximum x coordinate is achieved when the platform has an angle of 0
	else
		angle = platform->angle;
	float x_past_center = platform->radius * fabsf(cosf(angle)); // width of platform to the right of the center
	v2 center;
	if (platform->moves) {
		v2 p1 = platform->move_p1, p2 = platform->move_p2;
		// pick the point with the higher x coordinate
		if (p1.x > p2.x)
			center = p1;
		else
			center = p2;
	} else {
		center = platform->center;
	}
	return center.x + x_past_center;
}

// where the ball's distance traveled should be measured from
static float platforms_starting_line(Platform const *platforms, u32 nplatforms) {
	float rightmost_x = BALL_STARTING_X; // the starting line can't be to the left of the ball
	for (u32 i = 0; i < nplatforms; ++i) {
		float x = platform_rightmost_x(&platforms[i]);
		if (x > rightmost_x)
			rightmost_x = x;
	}
	return rightmost_x;
}

// render the given platforms
static void platforms_render(State *state, Platform *platforms, u32 nplatforms) {
	GL *gl = &state->gl;
	ShaderPlatform *shader = &state->shader_platform;
	float platform_render_thickness = state->platform_thickness;

	shader_start_using(gl, &shader->base);
	
	gl->Uniform1f(shader->uniform_thickness, platform_render_thickness);
	gl->UniformMatrix4fv(shader->uniform_transform, 1, GL_FALSE, state->transform.e);
	

	glBegin(GL_QUADS);
	glColor3f(1,0,1);
	for (Platform *platform = platforms, *end = platform + nplatforms; platform != end; ++platform) {
		float radius = platform->radius;
		v2 center = platform->center;
		v2 thickness_r = v2_polar(platform_render_thickness, platform->angle - HALF_PIf);
		v2 platform_r = v2_polar(radius, platform->angle);
		v2 endpoint1 = v2_add(center, platform_r);
		v2 endpoint2 = v2_sub(center, platform_r);

		gl_rgbacolor(platform->color);

	#if 1
		gl->VertexAttrib2f(shader->vertex_p1, endpoint1.x, endpoint1.y);
		gl->VertexAttrib2f(shader->vertex_p2, endpoint2.x, endpoint2.y);
		v2_gl_vertex(v2_sub(endpoint1, thickness_r));
		v2_gl_vertex(v2_sub(endpoint2, thickness_r));
		v2_gl_vertex(v2_add(endpoint2, thickness_r));
		v2_gl_vertex(v2_add(endpoint1, thickness_r));
	#else
		v2_gl_vertex(endpoint1);
		v2_gl_vertex(endpoint2);
	#endif
	}
	glEnd();
	shader_stop_using(gl);

	if (state->building) {
		// show arrows for platforms
		glBegin(GL_LINES);
		for (Platform *platform = platforms, *end = platform + nplatforms; platform != end; ++platform) {
			gl_rgbacolor(platform->color);
			if (platform->rotates) {
				float speed = platform->rotate_speed;
				float angle = speed * 0.5f;
				if (angle) {
					// draw arc-shaped arrow to show rotation
					float theta1 = HALF_PIf;
					float theta2 = theta1 + angle;
					float dtheta = 0.03f * sgnf(angle);
					float radius = platform->radius;
					v2 last_point = {};
					for (float theta = theta1; angle > 0 ? (theta < theta2) : (theta > theta2); theta += dtheta) {
						v2 point = b2_to_gl(state, v2_add(platform->center, v2_polar(radius, theta)));
						if (theta != theta1) {
							v2_gl_vertex(last_point);
							v2_gl_vertex(point);
						}
						last_point = point;
					}

					v2 p1 = b2_to_gl(state, v2_add(platform->center, v2_polar(radius-0.2f, theta2-0.1f * sgnf(angle))));
					v2 p2 = b2_to_gl(state, v2_add(platform->center, v2_polar(radius, theta2)));
					v2 p3 = b2_to_gl(state, v2_add(platform->center, v2_polar(radius+0.2f, theta2-0.1f * sgnf(angle))));

					v2_gl_vertex(p1); v2_gl_vertex(p2);
					v2_gl_vertex(p2); v2_gl_vertex(p3);
				}
			}

			if (platform->moves) {
				// draw double-headed arrow to show back & forth motion
				v2 p1 = platform->move_p1;
				v2 p2 = platform->move_p2;
				v2 p2_to_p1 = v2_scale(v2_normalize(v2_sub(p1, p2)), platform->move_speed * 0.5f);
				v2 p1_to_p2 = v2_scale(p2_to_p1, -1);
				v2 arrowhead_a1 = v2_add(p1, v2_rotate(p1_to_p2, +0.5f));
				v2 arrowhead_b1 = v2_add(p1, v2_rotate(p1_to_p2, -0.5f));
				v2 arrowhead_a2 = v2_add(p2, v2_rotate(p2_to_p1, +0.5f));
				v2 arrowhead_b2 = v2_add(p2, v2_rotate(p2_to_p1, -0.5f));
				
				v2 p1_gl = b2_to_gl(state, p1);
				v2 p2_gl = b2_to_gl(state, p2);
				v2 aa1_gl = b2_to_gl(state, arrowhead_a1);
				v2 ab1_gl = b2_to_gl(state, arrowhead_b1);
				v2 aa2_gl = b2_to_gl(state, arrowhead_a2);
				v2 ab2_gl = b2_to_gl(state, arrowhead_b2);

				v2_gl_vertex(p1_gl);
				v2_gl_vertex(p2_gl);

				v2_gl_vertex(aa1_gl);
				v2_gl_vertex(p1_gl);
				v2_gl_vertex(p1_gl);
				v2_gl_vertex(ab1_gl);

				v2_gl_vertex(aa2_gl);
				v2_gl_vertex(p2_gl);
				v2_gl_vertex(p2_gl);
				v2_gl_vertex(ab2_gl);
			}
		}
		glEnd();
	}
}

// sets platform->body to a new Box2D body.
static void platform_make_body(State *state, Platform *platform, u32 index) {
	b2World *world = state->world;
	assert(!platform->body);

	float radius = platform->radius;
	
	if (platform->moves)
		platform->center = platform->move_p1;

	v2 center = platform->center;

	b2BodyDef body_def;
	body_def.type = b2_kinematicBody;
	body_def.position.Set(center.x, center.y);
	body_def.angle = platform->angle;
	b2Body *body = world->CreateBody(&body_def);

	b2PolygonShape shape;
	shape.SetAsBox(radius, state->platform_thickness);

	b2FixtureDef fixture;
	fixture.shape = &shape;
	fixture.friction = 0.5f;
	fixture.userData.pointer = USER_DATA_PLATFORM | index;

	body->CreateFixture(&fixture);
	
	// velocity and rotate speed will be set when setup_reset is called
	
	platform->body = body;
}

class PlatformQueryCallback : public b2QueryCallback {
public:
	PlatformQueryCallback(State *state_) {
		this->state = state_;
	}
	bool ReportFixture(b2Fixture *fixture) {
		uintptr_t userdata = fixture->GetUserData().pointer;
		if (userdata & USER_DATA_PLATFORM) {
			u32 index = (u32)(userdata & ~USER_DATA_PLATFORM);
			assert(index < state->nplatforms);
			platform = &state->platforms[index];
			return false; // we can stop now
		} else {
			return true; // keep going
		}
	}
	Platform *platform = NULL;
	State *state = NULL;
};

static Platform *platform_at_mouse_pos(State *state) {
	v2 mouse_pos = state->mouse_pos;
	v2 mouse_radius = V2(0.1f, 0.1f); // you don't have to hover exactly over a platform to select it. this is the tolerance.
	v2 a = v2_sub(mouse_pos, mouse_radius);
	v2 b = v2_add(mouse_pos, mouse_radius);
	PlatformQueryCallback callback(state);
	b2AABB aabb;
	aabb.lowerBound = v2_to_b2(a);
	aabb.upperBound = v2_to_b2(b);
	state->world->QueryAABB(&callback, aabb);
	return callback.platform;
}

static void platform_delete(State *state, Platform *platform) {
	Platform *platforms = state->platforms;
	u32 nplatforms = state->nplatforms;
	u32 index = (u32)(platform - platforms);
	
	state->world->DestroyBody(platforms[index].body);

	if (index+1 < nplatforms) {
		// set this platform to last platform
		platforms[index] = platforms[nplatforms-1];
		memset(&platforms[nplatforms-1], 0, sizeof(Platform));
		platforms[index].body->GetFixtureList()->GetUserData().pointer = index | USER_DATA_PLATFORM;
	} else {
		// platform is at end of array; don't need to do anything special
		memset(&platforms[index], 0, sizeof(Platform));
	}
	--state->nplatforms;

}

static float platform_cost(Platform const *platform) {
	float cost = platform->radius * PLATFORM_RADIUS_COST;
	if (platform->moves)
		cost += platform->move_speed * PLATFORM_MOVE_SPEED_COST;
	if (platform->rotates)
		cost += fabsf(platform->rotate_speed) * PLATFORM_ROTATE_SPEED_COST;
	return cost;
}

static float platforms_cost(Platform const *platforms, u32 nplatforms) {
	float total_cost = 0;
	for (u32 i = 0; i < nplatforms; ++i) {
		total_cost += platform_cost(&platforms[i]);
	}
	return total_cost;
}

static void platform_write_to_file(Platform const *p, FILE *fp) {
	fwrite_float(fp, p->radius);
	fwrite_float(fp, p->start_angle);
	fwrite_u32(fp, p->color);

	u8 flags = (u8)(p->moves * 1) | (u8)(p->rotates * 2);
	fwrite_u8(fp, flags);
	if (p->moves) {
		fwrite_float(fp, p->move_speed);
		fwrite_v2(fp, p->move_p1);
		fwrite_v2(fp, p->move_p2);
	} else {
		fwrite_v2(fp, p->center);
	}
	if (p->rotates) {
		fwrite_float(fp, p->rotate_speed);
	}
}

static void platform_read_from_file(Platform *p, FILE *fp) {
	p->radius = fread_float(fp);
	p->start_angle = fread_float(fp);
	p->color = fread_u32(fp);

	u8 flags = fread_u8(fp);
	p->moves = (flags & 1) != 0;
	p->rotates = (flags & 2) != 0;

	if (p->moves) {
		p->move_speed = fread_float(fp);
		p->move_p1 = fread_v2(fp);
		p->move_p2 = fread_v2(fp);
	} else {
		p->center = fread_v2(fp);
	}

	if (p->rotates) {
		p->rotate_speed = fread_float(fp);
	}
}