diff options
author | pommicket <pommicket@gmail.com> | 2022-02-20 13:18:21 -0800 |
---|---|---|
committer | pommicket <pommicket@gmail.com> | 2022-02-20 13:18:21 -0800 |
commit | 9bc8a11afeed3569736b89754012e3ca22ee10f6 (patch) | |
tree | 5f0ec0d5c05f879b1ee86adfa654ed3ef2178d5f /05/musl-0.6.0/src/math | |
parent | 0f97a589b800bdb71dda05984192f0f66a52edaa (diff) |
conclusion
Diffstat (limited to '05/musl-0.6.0/src/math')
123 files changed, 8572 insertions, 0 deletions
diff --git a/05/musl-0.6.0/src/math/__fpclassify.c b/05/musl-0.6.0/src/math/__fpclassify.c new file mode 100644 index 0000000..1605110 --- /dev/null +++ b/05/musl-0.6.0/src/math/__fpclassify.c @@ -0,0 +1,14 @@ +#include <stdint.h> +#include <math.h> + +int __fpclassify(double __x) +{ + union { + double __d; + __uint64_t __i; + } __y = { __x }; + int __ee = __y.__i>>52 & 0x7ff; + if (!__ee) return __y.__i<<1 ? FP_SUBNORMAL : FP_ZERO; + if (__ee==0x7ff) return __y.__i<<12 ? FP_NAN : FP_INFINITE; + return FP_NORMAL; +} diff --git a/05/musl-0.6.0/src/math/__fpclassifyf.c b/05/musl-0.6.0/src/math/__fpclassifyf.c new file mode 100644 index 0000000..bf59d0d --- /dev/null +++ b/05/musl-0.6.0/src/math/__fpclassifyf.c @@ -0,0 +1,14 @@ +#include <stdint.h> +#include <math.h> + +int __fpclassifyf(float __x) +{ + union { + float __f; + __uint32_t __i; + } __y = { __x }; + int __ee = __y.__i>>23 & 0xff; + if (!__ee) return __y.__i<<1 ? FP_SUBNORMAL : FP_ZERO; + if (__ee==0xff) return __y.__i<<9 ? FP_NAN : FP_INFINITE; + return FP_NORMAL; +} diff --git a/05/musl-0.6.0/src/math/__fpclassifyl.c b/05/musl-0.6.0/src/math/__fpclassifyl.c new file mode 100644 index 0000000..4f93bef --- /dev/null +++ b/05/musl-0.6.0/src/math/__fpclassifyl.c @@ -0,0 +1,16 @@ +#include <stdint.h> +#include <math.h> + +/* FIXME: move this to arch-specific file */ +int __fpclassifyl(long double __x) +{ + union { + long double __ld; + __uint16_t __hw[5]; + __uint64_t __m; + } __y = { __x }; + int __ee = __y.__hw[4]&0x7fff; + if (!__ee) return __y.__m ? FP_SUBNORMAL : FP_ZERO; + if (__ee==0x7fff) return __y.__m ? FP_NAN : FP_INFINITE; + return FP_NORMAL; +} diff --git a/05/musl-0.6.0/src/math/__x86_64/e_sqrt.s b/05/musl-0.6.0/src/math/__x86_64/e_sqrt.s new file mode 100644 index 0000000..64de7d6 --- /dev/null +++ b/05/musl-0.6.0/src/math/__x86_64/e_sqrt.s @@ -0,0 +1,3 @@ +.global sqrt +sqrt: sqrtsd %xmm0, %xmm0 + ret diff --git a/05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s b/05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s new file mode 100644 index 0000000..2c77076 --- /dev/null +++ b/05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s @@ -0,0 +1,3 @@ +.global sqrtf +sqrtf: sqrtss %xmm0, %xmm0 + ret diff --git a/05/musl-0.6.0/src/math/e_acos.c b/05/musl-0.6.0/src/math/e_acos.c new file mode 100644 index 0000000..e023639 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_acos.c @@ -0,0 +1,99 @@ +/* @(#)e_acos.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* acos(x) + * Method : + * acos(x) = pi/2 - asin(x) + * acos(-x) = pi/2 + asin(x) + * For |x|<=0.5 + * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) + * For x>0.5 + * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) + * = 2asin(sqrt((1-x)/2)) + * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) + * = 2f + (2c + 2s*z*R(z)) + * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term + * for f so that f+c ~ sqrt(z). + * For x<-0.5 + * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) + * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + * Function needed: sqrt + */ + +#include <math.h> +#include "math_private.h" + +static const double +one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ +pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ +pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ +pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ +pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ +pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ +pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ +pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ +pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ +qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ +qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ +qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ +qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +double +acos(double x) +{ + double z,p,q,r,w,s,c,df; + int32_t hx,ix; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x3ff00000) { /* |x| >= 1 */ + uint32_t lx; + GET_LOW_WORD(lx,x); + if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ + if(hx>0) return 0.0; /* acos(1) = 0 */ + else return pi+2.0*pio2_lo; /* acos(-1)= pi */ + } + return (x-x)/(x-x); /* acos(|x|>1) is NaN */ + } + if(ix<0x3fe00000) { /* |x| < 0.5 */ + if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ + z = x*x; + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + r = p/q; + return pio2_hi - (x - (pio2_lo-x*r)); + } else if (hx<0) { /* x < -0.5 */ + z = (one+x)*0.5; + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + s = sqrt(z); + r = p/q; + w = r*s-pio2_lo; + return pi - 2.0*(s+w); + } else { /* x > 0.5 */ + z = (one-x)*0.5; + s = sqrt(z); + df = s; + SET_LOW_WORD(df,0); + c = (z-df*df)/(s+df); + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + r = p/q; + w = r*s+c; + return 2.0*(df+w); + } +} diff --git a/05/musl-0.6.0/src/math/e_acosf.c b/05/musl-0.6.0/src/math/e_acosf.c new file mode 100644 index 0000000..4c59781 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_acosf.c @@ -0,0 +1,77 @@ +/* e_acosf.c -- float version of e_acos.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0000000000e+00, /* 0x3F800000 */ +pi = 3.1415925026e+00, /* 0x40490fda */ +pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */ +pio2_lo = 7.5497894159e-08, /* 0x33a22168 */ +pS0 = 1.6666667163e-01, /* 0x3e2aaaab */ +pS1 = -3.2556581497e-01, /* 0xbea6b090 */ +pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */ +pS3 = -4.0055535734e-02, /* 0xbd241146 */ +pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */ +pS5 = 3.4793309169e-05, /* 0x3811ef08 */ +qS1 = -2.4033949375e+00, /* 0xc019d139 */ +qS2 = 2.0209457874e+00, /* 0x4001572d */ +qS3 = -6.8828397989e-01, /* 0xbf303361 */ +qS4 = 7.7038154006e-02; /* 0x3d9dc62e */ + +float +acosf(float x) +{ + float z,p,q,r,w,s,c,df; + int32_t hx,ix; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix==0x3f800000) { /* |x|==1 */ + if(hx>0) return 0.0; /* acos(1) = 0 */ + else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */ + } else if(ix>0x3f800000) { /* |x| >= 1 */ + return (x-x)/(x-x); /* acos(|x|>1) is NaN */ + } + if(ix<0x3f000000) { /* |x| < 0.5 */ + if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ + z = x*x; + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + r = p/q; + return pio2_hi - (x - (pio2_lo-x*r)); + } else if (hx<0) { /* x < -0.5 */ + z = (one+x)*(float)0.5; + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + s = sqrtf(z); + r = p/q; + w = r*s-pio2_lo; + return pi - (float)2.0*(s+w); + } else { /* x > 0.5 */ + int32_t idf; + z = (one-x)*(float)0.5; + s = sqrtf(z); + df = s; + GET_FLOAT_WORD(idf,df); + SET_FLOAT_WORD(df,idf&0xfffff000); + c = (z-df*df)/(s+df); + p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); + q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); + r = p/q; + w = r*s+c; + return (float)2.0*(df+w); + } +} diff --git a/05/musl-0.6.0/src/math/e_acosh.c b/05/musl-0.6.0/src/math/e_acosh.c new file mode 100644 index 0000000..8b454e7 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_acosh.c @@ -0,0 +1,59 @@ + +/* @(#)e_acosh.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* acosh(x) + * Method : + * Based on + * acosh(x) = log [ x + sqrt(x*x-1) ] + * we have + * acosh(x) := log(x)+ln2, if x is large; else + * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else + * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. + * + * Special cases: + * acosh(x) is NaN with signal if x<1. + * acosh(NaN) is NaN without signal. + */ + +#include <math.h> +#include "math_private.h" + +static const double +one = 1.0, +ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ + +double +acosh(double x) +{ + double t; + int32_t hx; + uint32_t lx; + EXTRACT_WORDS(hx,lx,x); + if(hx<0x3ff00000) { /* x < 1 */ + return (x-x)/(x-x); + } else if(hx >=0x41b00000) { /* x > 2**28 */ + if(hx >=0x7ff00000) { /* x is inf of NaN */ + return x+x; + } else + return log(x)+ln2; /* acosh(huge)=log(2x) */ + } else if(((hx-0x3ff00000)|lx)==0) { + return 0.0; /* acosh(1) = 0 */ + } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ + t=x*x; + return log(2.0*x-one/(x+sqrt(t-one))); + } else { /* 1<x<2 */ + t = x-one; + return log1p(t+sqrt(2.0*t+t*t)); + } +} diff --git a/05/musl-0.6.0/src/math/e_acoshf.c b/05/musl-0.6.0/src/math/e_acoshf.c new file mode 100644 index 0000000..b7f1df6 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_acoshf.c @@ -0,0 +1,45 @@ +/* e_acoshf.c -- float version of e_acosh.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0, +ln2 = 6.9314718246e-01; /* 0x3f317218 */ + +float +acoshf(float x) +{ + float t; + int32_t hx; + GET_FLOAT_WORD(hx,x); + if(hx<0x3f800000) { /* x < 1 */ + return (x-x)/(x-x); + } else if(hx >=0x4d800000) { /* x > 2**28 */ + if(hx >=0x7f800000) { /* x is inf of NaN */ + return x+x; + } else + return logf(x)+ln2; /* acosh(huge)=log(2x) */ + } else if (hx==0x3f800000) { + return 0.0; /* acosh(1) = 0 */ + } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ + t=x*x; + return logf((float)2.0*x-one/(x+sqrtf(t-one))); + } else { /* 1<x<2 */ + t = x-one; + return log1pf(t+sqrtf((float)2.0*t+t*t)); + } +} diff --git a/05/musl-0.6.0/src/math/e_asin.c b/05/musl-0.6.0/src/math/e_asin.c new file mode 100644 index 0000000..4bf162a --- /dev/null +++ b/05/musl-0.6.0/src/math/e_asin.c @@ -0,0 +1,109 @@ + +/* @(#)e_asin.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* asin(x) + * Method : + * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... + * we approximate asin(x) on [0,0.5] by + * asin(x) = x + x*x^2*R(x^2) + * where + * R(x^2) is a rational approximation of (asin(x)-x)/x^3 + * and its remez error is bounded by + * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) + * + * For x in [0.5,1] + * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) + * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; + * then for x>0.98 + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) + * For x<=0.98, let pio4_hi = pio2_hi/2, then + * f = hi part of s; + * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) + * and + * asin(x) = pi/2 - 2*(s+s*z*R(z)) + * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) + * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) + * + * Special cases: + * if x is NaN, return x itself; + * if |x|>1, return NaN with invalid signal. + * + */ + + +#include <math.h> +#include "math_private.h" + +static const double +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +huge = 1.000e+300, +pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ +pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ +pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ + /* coefficient for R(x^2) */ +pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ +pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ +pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ +pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ +pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ +pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ +qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ +qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ +qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ +qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ + +double +asin(double x) +{ + double t=0.0,w,p,q,c,r,s; + int32_t hx,ix; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>= 0x3ff00000) { /* |x|>= 1 */ + uint32_t lx; + GET_LOW_WORD(lx,x); + if(((ix-0x3ff00000)|lx)==0) + /* asin(1)=+-pi/2 with inexact */ + return x*pio2_hi+x*pio2_lo; + return (x-x)/(x-x); /* asin(|x|>1) is NaN */ + } else if (ix<0x3fe00000) { /* |x|<0.5 */ + if(ix<0x3e400000) { /* if |x| < 2**-27 */ + if(huge+x>one) return x;/* return x with inexact if x!=0*/ + } else + t = x*x; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + w = p/q; + return x+x*w; + } + /* 1> |x|>= 0.5 */ + w = one-fabs(x); + t = w*0.5; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + s = sqrt(t); + if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ + w = p/q; + t = pio2_hi-(2.0*(s+s*w)-pio2_lo); + } else { + w = s; + SET_LOW_WORD(w,0); + c = (t-w*w)/(s+w); + r = p/q; + p = 2.0*s*r-(pio2_lo-2.0*c); + q = pio4_hi-2.0*w; + t = pio4_hi-(p-q); + } + if(hx>0) return t; else return -t; +} diff --git a/05/musl-0.6.0/src/math/e_asinf.c b/05/musl-0.6.0/src/math/e_asinf.c new file mode 100644 index 0000000..9c69397 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_asinf.c @@ -0,0 +1,80 @@ +/* e_asinf.c -- float version of e_asin.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0000000000e+00, /* 0x3F800000 */ +huge = 1.000e+30, +pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */ +pio2_lo = 7.5497894159e-08, /* 0x33a22168 */ +pio4_hi = 7.8539818525e-01, /* 0x3f490fdb */ + /* coefficient for R(x^2) */ +pS0 = 1.6666667163e-01, /* 0x3e2aaaab */ +pS1 = -3.2556581497e-01, /* 0xbea6b090 */ +pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */ +pS3 = -4.0055535734e-02, /* 0xbd241146 */ +pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */ +pS5 = 3.4793309169e-05, /* 0x3811ef08 */ +qS1 = -2.4033949375e+00, /* 0xc019d139 */ +qS2 = 2.0209457874e+00, /* 0x4001572d */ +qS3 = -6.8828397989e-01, /* 0xbf303361 */ +qS4 = 7.7038154006e-02; /* 0x3d9dc62e */ + +float +asinf(float x) +{ + float t=0.0,w,p,q,c,r,s; + int32_t hx,ix; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix==0x3f800000) { + /* asin(1)=+-pi/2 with inexact */ + return x*pio2_hi+x*pio2_lo; + } else if(ix> 0x3f800000) { /* |x|>= 1 */ + return (x-x)/(x-x); /* asin(|x|>1) is NaN */ + } else if (ix<0x3f000000) { /* |x|<0.5 */ + if(ix<0x32000000) { /* if |x| < 2**-27 */ + if(huge+x>one) return x;/* return x with inexact if x!=0*/ + } else + t = x*x; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + w = p/q; + return x+x*w; + } + /* 1> |x|>= 0.5 */ + w = one-fabsf(x); + t = w*(float)0.5; + p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); + q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); + s = sqrtf(t); + if(ix>=0x3F79999A) { /* if |x| > 0.975 */ + w = p/q; + t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo); + } else { + int32_t iw; + w = s; + GET_FLOAT_WORD(iw,w); + SET_FLOAT_WORD(w,iw&0xfffff000); + c = (t-w*w)/(s+w); + r = p/q; + p = (float)2.0*s*r-(pio2_lo-(float)2.0*c); + q = pio4_hi-(float)2.0*w; + t = pio4_hi-(p-q); + } + if(hx>0) return t; else return -t; +} diff --git a/05/musl-0.6.0/src/math/e_atan2.c b/05/musl-0.6.0/src/math/e_atan2.c new file mode 100644 index 0000000..dd02116 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_atan2.c @@ -0,0 +1,120 @@ + +/* @(#)e_atan2.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* atan2(y,x) + * Method : + * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). + * 2. Reduce x to positive by (if x and y are unexceptional): + * ARG (x+iy) = arctan(y/x) ... if x > 0, + * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, + * + * Special cases: + * + * ATAN2((anything), NaN ) is NaN; + * ATAN2(NAN , (anything) ) is NaN; + * ATAN2(+-0, +(anything but NaN)) is +-0 ; + * ATAN2(+-0, -(anything but NaN)) is +-pi ; + * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; + * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; + * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; + * ATAN2(+-INF,+INF ) is +-pi/4 ; + * ATAN2(+-INF,-INF ) is +-3pi/4; + * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +tiny = 1.0e-300, +zero = 0.0, +pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ +pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ +pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ +pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ + +double +atan2(double y, double x) +{ + double z; + int32_t k,m,hx,hy,ix,iy; + uint32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + ix = hx&0x7fffffff; + EXTRACT_WORDS(hy,ly,y); + iy = hy&0x7fffffff; + if(((ix|((lx|-lx)>>31))>0x7ff00000)|| + ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */ + return x+y; + if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */ + m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ + + /* when y = 0 */ + if((iy|ly)==0) { + switch(m) { + case 0: + case 1: return y; /* atan(+-0,+anything)=+-0 */ + case 2: return pi+tiny;/* atan(+0,-anything) = pi */ + case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ + } + } + /* when x = 0 */ + if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* when x is INF */ + if(ix==0x7ff00000) { + if(iy==0x7ff00000) { + switch(m) { + case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ + case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ + case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ + case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ + } + } else { + switch(m) { + case 0: return zero ; /* atan(+...,+INF) */ + case 1: return -zero ; /* atan(-...,+INF) */ + case 2: return pi+tiny ; /* atan(+...,-INF) */ + case 3: return -pi-tiny ; /* atan(-...,-INF) */ + } + } + } + /* when y is INF */ + if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* compute y/x */ + k = (iy-ix)>>20; + if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ + else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ + else z=atan(fabs(y/x)); /* safe to do y/x */ + switch (m) { + case 0: return z ; /* atan(+,+) */ + case 1: { + uint32_t zh; + GET_HIGH_WORD(zh,z); + SET_HIGH_WORD(z,zh ^ 0x80000000); + } + return z ; /* atan(-,+) */ + case 2: return pi-(z-pi_lo);/* atan(+,-) */ + default: /* case 3 */ + return (z-pi_lo)-pi;/* atan(-,-) */ + } +} diff --git a/05/musl-0.6.0/src/math/e_atan2f.c b/05/musl-0.6.0/src/math/e_atan2f.c new file mode 100644 index 0000000..535e10a --- /dev/null +++ b/05/musl-0.6.0/src/math/e_atan2f.c @@ -0,0 +1,93 @@ +/* e_atan2f.c -- float version of e_atan2.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +tiny = 1.0e-30, +zero = 0.0, +pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */ +pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */ +pi = 3.1415927410e+00, /* 0x40490fdb */ +pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */ + +float +atan2f(float y, float x) +{ + float z; + int32_t k,m,hx,hy,ix,iy; + + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + GET_FLOAT_WORD(hy,y); + iy = hy&0x7fffffff; + if((ix>0x7f800000)|| + (iy>0x7f800000)) /* x or y is NaN */ + return x+y; + if(hx==0x3f800000) return atanf(y); /* x=1.0 */ + m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ + + /* when y = 0 */ + if(iy==0) { + switch(m) { + case 0: + case 1: return y; /* atan(+-0,+anything)=+-0 */ + case 2: return pi+tiny;/* atan(+0,-anything) = pi */ + case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ + } + } + /* when x = 0 */ + if(ix==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* when x is INF */ + if(ix==0x7f800000) { + if(iy==0x7f800000) { + switch(m) { + case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ + case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ + case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ + case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ + } + } else { + switch(m) { + case 0: return zero ; /* atan(+...,+INF) */ + case 1: return -zero ; /* atan(-...,+INF) */ + case 2: return pi+tiny ; /* atan(+...,-INF) */ + case 3: return -pi-tiny ; /* atan(-...,-INF) */ + } + } + } + /* when y is INF */ + if(iy==0x7f800000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; + + /* compute y/x */ + k = (iy-ix)>>23; + if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */ + else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ + else z=atanf(fabsf(y/x)); /* safe to do y/x */ + switch (m) { + case 0: return z ; /* atan(+,+) */ + case 1: { + uint32_t zh; + GET_FLOAT_WORD(zh,z); + SET_FLOAT_WORD(z,zh ^ 0x80000000); + } + return z ; /* atan(-,+) */ + case 2: return pi-(z-pi_lo);/* atan(+,-) */ + default: /* case 3 */ + return (z-pi_lo)-pi;/* atan(-,-) */ + } +} diff --git a/05/musl-0.6.0/src/math/e_atanh.c b/05/musl-0.6.0/src/math/e_atanh.c new file mode 100644 index 0000000..45f1c96 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_atanh.c @@ -0,0 +1,59 @@ + +/* @(#)e_atanh.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* atanh(x) + * Method : + * 1.Reduced x to positive by atanh(-x) = -atanh(x) + * 2.For x>=0.5 + * 1 2x x + * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) + * 2 1 - x 1 - x + * + * For x<0.5 + * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) + * + * Special cases: + * atanh(x) is NaN if |x| > 1 with signal; + * atanh(NaN) is that NaN with no signal; + * atanh(+-1) is +-INF with signal. + * + */ + +#include <math.h> +#include "math_private.h" + +static const double one = 1.0, huge = 1e300; +static const double zero = 0.0; + +double +atanh(double x) +{ + double t; + int32_t hx,ix; + uint32_t lx; + EXTRACT_WORDS(hx,lx,x); + ix = hx&0x7fffffff; + if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */ + return (x-x)/(x-x); + if(ix==0x3ff00000) + return x/zero; + if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */ + SET_HIGH_WORD(x,ix); + if(ix<0x3fe00000) { /* x < 0.5 */ + t = x+x; + t = 0.5*log1p(t+t*x/(one-x)); + } else + t = 0.5*log1p((x+x)/(one-x)); + if(hx>=0) return t; else return -t; +} diff --git a/05/musl-0.6.0/src/math/e_atanhf.c b/05/musl-0.6.0/src/math/e_atanhf.c new file mode 100644 index 0000000..7356cfc --- /dev/null +++ b/05/musl-0.6.0/src/math/e_atanhf.c @@ -0,0 +1,42 @@ +/* e_atanhf.c -- float version of e_atanh.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one = 1.0, huge = 1e30; + +static const float zero = 0.0; + +float +atanhf(float x) +{ + float t; + int32_t hx,ix; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if (ix>0x3f800000) /* |x|>1 */ + return (x-x)/(x-x); + if(ix==0x3f800000) + return x/zero; + if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */ + SET_FLOAT_WORD(x,ix); + if(ix<0x3f000000) { /* x < 0.5 */ + t = x+x; + t = (float)0.5*log1pf(t+t*x/(one-x)); + } else + t = (float)0.5*log1pf((x+x)/(one-x)); + if(hx>=0) return t; else return -t; +} diff --git a/05/musl-0.6.0/src/math/e_cosh.c b/05/musl-0.6.0/src/math/e_cosh.c new file mode 100644 index 0000000..ad425bd --- /dev/null +++ b/05/musl-0.6.0/src/math/e_cosh.c @@ -0,0 +1,82 @@ + +/* @(#)e_cosh.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* cosh(x) + * Method : + * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2 + * 1. Replace x by |x| (cosh(x) = cosh(-x)). + * 2. + * [ exp(x) - 1 ]^2 + * 0 <= x <= ln2/2 : cosh(x) := 1 + ------------------- + * 2*exp(x) + * + * exp(x) + 1/exp(x) + * ln2/2 <= x <= 22 : cosh(x) := ------------------- + * 2 + * 22 <= x <= lnovft : cosh(x) := exp(x)/2 + * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2) + * ln2ovft < x : cosh(x) := huge*huge (overflow) + * + * Special cases: + * cosh(x) is |x| if x is +INF, -INF, or NaN. + * only cosh(0)=1 is exact for finite x. + */ + +#include <math.h> +#include "math_private.h" + +static const double one = 1.0, half=0.5, huge = 1.0e300; + +double +cosh(double x) +{ + double t,w; + int32_t ix; + uint32_t lx; + + /* High word of |x|. */ + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; + + /* x is INF or NaN */ + if(ix>=0x7ff00000) return x*x; + + /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ + if(ix<0x3fd62e43) { + t = expm1(fabs(x)); + w = one+t; + if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */ + return one+(t*t)/(w+w); + } + + /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ + if (ix < 0x40360000) { + t = exp(fabs(x)); + return half*t+half/t; + } + + /* |x| in [22, log(maxdouble)] return half*exp(|x|) */ + if (ix < 0x40862E42) return half*exp(fabs(x)); + + /* |x| in [log(maxdouble), overflowthresold] */ + GET_LOW_WORD(lx,x); + if (ix<0x408633CE || + ((ix==0x408633ce)&&(lx<=(uint32_t)0x8fb9f87d))) { + w = exp(half*fabs(x)); + t = half*w; + return t*w; + } + + /* |x| > overflowthresold, cosh(x) overflow */ + return huge*huge; +} diff --git a/05/musl-0.6.0/src/math/e_coshf.c b/05/musl-0.6.0/src/math/e_coshf.c new file mode 100644 index 0000000..6db1088 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_coshf.c @@ -0,0 +1,59 @@ +/* e_coshf.c -- float version of e_cosh.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one = 1.0, half=0.5, huge = 1.0e30; + +float +coshf(float x) +{ + float t,w; + int32_t ix; + + GET_FLOAT_WORD(ix,x); + ix &= 0x7fffffff; + + /* x is INF or NaN */ + if(ix>=0x7f800000) return x*x; + + /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ + if(ix<0x3eb17218) { + t = expm1f(fabsf(x)); + w = one+t; + if (ix<0x24000000) return w; /* cosh(tiny) = 1 */ + return one+(t*t)/(w+w); + } + + /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ + if (ix < 0x41b00000) { + t = expf(fabsf(x)); + return half*t+half/t; + } + + /* |x| in [22, log(maxdouble)] return half*exp(|x|) */ + if (ix < 0x42b17180) return half*expf(fabsf(x)); + + /* |x| in [log(maxdouble), overflowthresold] */ + if (ix<=0x42b2d4fc) { + w = expf(half*fabsf(x)); + t = half*w; + return t*w; + } + + /* |x| > overflowthresold, cosh(x) overflow */ + return huge*huge; +} diff --git a/05/musl-0.6.0/src/math/e_exp.c b/05/musl-0.6.0/src/math/e_exp.c new file mode 100644 index 0000000..66107b9 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_exp.c @@ -0,0 +1,155 @@ + +/* @(#)e_exp.c 1.6 04/04/22 */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* exp(x) + * Returns the exponential of x. + * + * Method + * 1. Argument reduction: + * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2. + * + * Here r will be represented as r = hi-lo for better + * accuracy. + * + * 2. Approximation of exp(r) by a special rational function on + * the interval [0,0.34658]: + * Write + * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + * We use a special Remes algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * of this polynomial approximation is bounded by 2**-59. In + * other words, + * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + * (where z=r*r, and the values of P1 to P5 are listed below) + * and + * | 5 | -59 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | | + * The computation of exp(r) thus becomes + * 2*r + * exp(r) = 1 + ------- + * R - r + * r*R1(r) + * = 1 + r + ----------- (for better accuracy) + * 2 - R1(r) + * where + * 2 4 10 + * R1(r) = r - (P1*r + P2*r + ... + P5*r ). + * + * 3. Scale back to obtain exp(x): + * From step 1, we have + * exp(x) = 2^k * exp(r) + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF) is 0, and + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then exp(x) overflow + * if x < -7.45133219101941108420e+02 then exp(x) underflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +one = 1.0, +halF[2] = {0.5,-0.5,}, +huge = 1.0e+300, +twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ +o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ +u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ +ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ + -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ +ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ + -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ +invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + + +double +exp(double x) /* default IEEE double exp */ +{ + double y,hi=0.0,lo=0.0,c,t; + int32_t k=0,xsb; + uint32_t hx; + + GET_HIGH_WORD(hx,x); + xsb = (hx>>31)&1; /* sign bit of x */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out non-finite argument */ + if(hx >= 0x40862E42) { /* if |x|>=709.78... */ + if(hx>=0x7ff00000) { + uint32_t lx; + GET_LOW_WORD(lx,x); + if(((hx&0xfffff)|lx)!=0) + return x+x; /* NaN */ + else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ + } + if(x > o_threshold) return huge*huge; /* overflow */ + if(x < u_threshold) return twom1000*twom1000; /* underflow */ + } + + /* argument reduction */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; + } else { + k = (int)(invln2*x+halF[xsb]); + t = k; + hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ + lo = t*ln2LO[0]; + } + x = hi - lo; + } + else if(hx < 0x3e300000) { /* when |x|<2**-28 */ + if(huge+x>one) return one+x;/* trigger inexact */ + } + else k = 0; + + /* x is now in primary range */ + t = x*x; + c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + if(k==0) return one-((x*c)/(c-2.0)-x); + else y = one-((lo-(x*c)/(2.0-c))-hi); + if(k >= -1021) { + uint32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ + return y; + } else { + uint32_t hy; + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ + return y*twom1000; + } +} diff --git a/05/musl-0.6.0/src/math/e_expf.c b/05/musl-0.6.0/src/math/e_expf.c new file mode 100644 index 0000000..99818ed --- /dev/null +++ b/05/musl-0.6.0/src/math/e_expf.c @@ -0,0 +1,91 @@ +/* e_expf.c -- float version of e_exp.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0, +halF[2] = {0.5,-0.5,}, +huge = 1.0e+30, +twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */ +o_threshold= 8.8721679688e+01, /* 0x42b17180 */ +u_threshold= -1.0397208405e+02, /* 0xc2cff1b5 */ +ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */ + -6.9313812256e-01,}, /* 0xbf317180 */ +ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */ + -9.0580006145e-06,}, /* 0xb717f7d1 */ +invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */ +P1 = 1.6666667163e-01, /* 0x3e2aaaab */ +P2 = -2.7777778450e-03, /* 0xbb360b61 */ +P3 = 6.6137559770e-05, /* 0x388ab355 */ +P4 = -1.6533901999e-06, /* 0xb5ddea0e */ +P5 = 4.1381369442e-08; /* 0x3331bb4c */ + +float +expf(float x) /* default IEEE double exp */ +{ + float y,hi=0.0,lo=0.0,c,t; + int32_t k=0,xsb; + uint32_t hx; + + GET_FLOAT_WORD(hx,x); + xsb = (hx>>31)&1; /* sign bit of x */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out non-finite argument */ + if(hx >= 0x42b17218) { /* if |x|>=88.721... */ + if(hx>0x7f800000) + return x+x; /* NaN */ + if(hx==0x7f800000) + return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ + if(x > o_threshold) return huge*huge; /* overflow */ + if(x < u_threshold) return twom100*twom100; /* underflow */ + } + + /* argument reduction */ + if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ + hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; + } else { + k = invln2*x+halF[xsb]; + t = k; + hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ + lo = t*ln2LO[0]; + } + x = hi - lo; + } + else if(hx < 0x31800000) { /* when |x|<2**-28 */ + if(huge+x>one) return one+x;/* trigger inexact */ + } + else k = 0; + + /* x is now in primary range */ + t = x*x; + c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + if(k==0) return one-((x*c)/(c-(float)2.0)-x); + else y = one-((lo-(x*c)/((float)2.0-c))-hi); + if(k >= -125) { + uint32_t hy; + GET_FLOAT_WORD(hy,y); + SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */ + return y; + } else { + uint32_t hy; + GET_FLOAT_WORD(hy,y); + SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */ + return y*twom100; + } +} diff --git a/05/musl-0.6.0/src/math/e_fmod.c b/05/musl-0.6.0/src/math/e_fmod.c new file mode 100644 index 0000000..99afe48 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_fmod.c @@ -0,0 +1,129 @@ + +/* @(#)e_fmod.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fmod(x,y) + * Return x mod y in exact arithmetic + * Method: shift and subtract + */ + +#include <math.h> +#include "math_private.h" + +static const double one = 1.0, Zero[] = {0.0, -0.0,}; + +double +fmod(double x, double y) +{ + int32_t n,hx,hy,hz,ix,iy,sx,i; + uint32_t lx,ly,lz; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + sx = hx&0x80000000; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffff; /* |y| */ + + /* purge off exception values */ + if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ + ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ + return (x*y)/(x*y); + if(hx<=hy) { + if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ + if(lx==ly) + return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ + } + + /* determine ix = ilogb(x) */ + if(hx<0x00100000) { /* subnormal x */ + if(hx==0) { + for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; + } else { + for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; + } + } else ix = (hx>>20)-1023; + + /* determine iy = ilogb(y) */ + if(hy<0x00100000) { /* subnormal y */ + if(hy==0) { + for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; + } else { + for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; + } + } else iy = (hy>>20)-1023; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -1022) + hx = 0x00100000|(0x000fffff&hx); + else { /* subnormal x, shift x to normal */ + n = -1022-ix; + if(n<=31) { + hx = (hx<<n)|(lx>>(32-n)); + lx <<= n; + } else { + hx = lx<<(n-32); + lx = 0; + } + } + if(iy >= -1022) + hy = 0x00100000|(0x000fffff&hy); + else { /* subnormal y, shift y to normal */ + n = -1022-iy; + if(n<=31) { + hy = (hy<<n)|(ly>>(32-n)); + ly <<= n; + } else { + hy = ly<<(n-32); + ly = 0; + } + } + + /* fix point fmod */ + n = ix - iy; + while(n--) { + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} + else { + if((hz|lz)==0) /* return sign(x)*0 */ + return Zero[(uint32_t)sx>>31]; + hx = hz+hz+(lz>>31); lx = lz+lz; + } + } + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz>=0) {hx=hz;lx=lz;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) /* return sign(x)*0 */ + return Zero[(uint32_t)sx>>31]; + while(hx<0x00100000) { /* normalize x */ + hx = hx+hx+(lx>>31); lx = lx+lx; + iy -= 1; + } + if(iy>= -1022) { /* normalize output */ + hx = ((hx-0x00100000)|((iy+1023)<<20)); + INSERT_WORDS(x,hx|sx,lx); + } else { /* subnormal output */ + n = -1022 - iy; + if(n<=20) { + lx = (lx>>n)|((uint32_t)hx<<(32-n)); + hx >>= n; + } else if (n<=31) { + lx = (hx<<(32-n))|(lx>>n); hx = sx; + } else { + lx = hx>>(n-32); hx = sx; + } + INSERT_WORDS(x,hx|sx,lx); + x *= one; /* create necessary signal */ + } + return x; /* exact output */ +} diff --git a/05/musl-0.6.0/src/math/e_fmodf.c b/05/musl-0.6.0/src/math/e_fmodf.c new file mode 100644 index 0000000..fe86cb0 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_fmodf.c @@ -0,0 +1,101 @@ +/* e_fmodf.c -- float version of e_fmod.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fmodf(x,y) + * Return x mod y in exact arithmetic + * Method: shift and subtract + */ + +#include <math.h> +#include "math_private.h" + +static const float one = 1.0, Zero[] = {0.0, -0.0,}; + +float +fmodf(float x, float y) +{ + int32_t n,hx,hy,hz,ix,iy,sx,i; + + GET_FLOAT_WORD(hx,x); + GET_FLOAT_WORD(hy,y); + sx = hx&0x80000000; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffff; /* |y| */ + + /* purge off exception values */ + if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */ + (hy>0x7f800000)) /* or y is NaN */ + return (x*y)/(x*y); + if(hx<hy) return x; /* |x|<|y| return x */ + if(hx==hy) + return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ + + /* determine ix = ilogb(x) */ + if(hx<0x00800000) { /* subnormal x */ + for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; + } else ix = (hx>>23)-127; + + /* determine iy = ilogb(y) */ + if(hy<0x00800000) { /* subnormal y */ + for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1; + } else iy = (hy>>23)-127; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -126) + hx = 0x00800000|(0x007fffff&hx); + else { /* subnormal x, shift x to normal */ + n = -126-ix; + hx = hx<<n; + } + if(iy >= -126) + hy = 0x00800000|(0x007fffff&hy); + else { /* subnormal y, shift y to normal */ + n = -126-iy; + hy = hy<<n; + } + + /* fix point fmod */ + n = ix - iy; + while(n--) { + hz=hx-hy; + if(hz<0){hx = hx+hx;} + else { + if(hz==0) /* return sign(x)*0 */ + return Zero[(uint32_t)sx>>31]; + hx = hz+hz; + } + } + hz=hx-hy; + if(hz>=0) {hx=hz;} + + /* convert back to floating value and restore the sign */ + if(hx==0) /* return sign(x)*0 */ + return Zero[(uint32_t)sx>>31]; + while(hx<0x00800000) { /* normalize x */ + hx = hx+hx; + iy -= 1; + } + if(iy>= -126) { /* normalize output */ + hx = ((hx-0x00800000)|((iy+127)<<23)); + SET_FLOAT_WORD(x,hx|sx); + } else { /* subnormal output */ + n = -126 - iy; + hx >>= n; + SET_FLOAT_WORD(x,hx|sx); + x *= one; /* create necessary signal */ + } + return x; /* exact output */ +} diff --git a/05/musl-0.6.0/src/math/e_hypot.c b/05/musl-0.6.0/src/math/e_hypot.c new file mode 100644 index 0000000..e925adc --- /dev/null +++ b/05/musl-0.6.0/src/math/e_hypot.c @@ -0,0 +1,121 @@ + +/* @(#)e_hypot.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* hypot(x,y) + * + * Method : + * If (assume round-to-nearest) z=x*x+y*y + * has error less than sqrt(2)/2 ulp, than + * sqrt(z) has error less than 1 ulp (exercise). + * + * So, compute sqrt(x*x+y*y) with some care as + * follows to get the error below 1 ulp: + * + * Assume x>y>0; + * (if possible, set rounding to round-to-nearest) + * 1. if x > 2y use + * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y + * where x1 = x with lower 32 bits cleared, x2 = x-x1; else + * 2. if x <= 2y use + * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) + * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, + * y1= y with lower 32 bits chopped, y2 = y-y1. + * + * NOTE: scaling may be necessary if some argument is too + * large or too tiny + * + * Special cases: + * hypot(x,y) is INF if x or y is +INF or -INF; else + * hypot(x,y) is NAN if x or y is NAN. + * + * Accuracy: + * hypot(x,y) returns sqrt(x^2+y^2) with error less + * than 1 ulps (units in the last place) + */ + +#include <math.h> +#include "math_private.h" + +double +hypot(double x, double y) +{ + double a=x,b=y,t1,t2,y1,y2,w; + int32_t j,k,ha,hb; + + GET_HIGH_WORD(ha,x); + ha &= 0x7fffffff; + GET_HIGH_WORD(hb,y); + hb &= 0x7fffffff; + if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} + SET_HIGH_WORD(a,ha); /* a <- |a| */ + SET_HIGH_WORD(b,hb); /* b <- |b| */ + if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ + k=0; + if(ha > 0x5f300000) { /* a>2**500 */ + if(ha >= 0x7ff00000) { /* Inf or NaN */ + uint32_t low; + w = a+b; /* for sNaN */ + GET_LOW_WORD(low,a); + if(((ha&0xfffff)|low)==0) w = a; + GET_LOW_WORD(low,b); + if(((hb^0x7ff00000)|low)==0) w = b; + return w; + } + /* scale a and b by 2**-600 */ + ha -= 0x25800000; hb -= 0x25800000; k += 600; + SET_HIGH_WORD(a,ha); + SET_HIGH_WORD(b,hb); + } + if(hb < 0x20b00000) { /* b < 2**-500 */ + if(hb <= 0x000fffff) { /* subnormal b or 0 */ + uint32_t low; + GET_LOW_WORD(low,b); + if((hb|low)==0) return a; + t1=0; + SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ + b *= t1; + a *= t1; + k -= 1022; + } else { /* scale a and b by 2^600 */ + ha += 0x25800000; /* a *= 2^600 */ + hb += 0x25800000; /* b *= 2^600 */ + k -= 600; + SET_HIGH_WORD(a,ha); + SET_HIGH_WORD(b,hb); + } + } + /* medium size a and b */ + w = a-b; + if (w>b) { + t1 = 0; + SET_HIGH_WORD(t1,ha); + t2 = a-t1; + w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); + } else { + a = a+a; + y1 = 0; + SET_HIGH_WORD(y1,hb); + y2 = b - y1; + t1 = 0; + SET_HIGH_WORD(t1,ha+0x00100000); + t2 = a - t1; + w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); + } + if(k!=0) { + uint32_t high; + t1 = 1.0; + GET_HIGH_WORD(high,t1); + SET_HIGH_WORD(t1,high+(k<<20)); + return t1*w; + } else return w; +} diff --git a/05/musl-0.6.0/src/math/e_hypotf.c b/05/musl-0.6.0/src/math/e_hypotf.c new file mode 100644 index 0000000..1377355 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_hypotf.c @@ -0,0 +1,79 @@ +/* e_hypotf.c -- float version of e_hypot.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +float +hypotf(float x, float y) +{ + float a=x,b=y,t1,t2,y1,y2,w; + int32_t j,k,ha,hb; + + GET_FLOAT_WORD(ha,x); + ha &= 0x7fffffff; + GET_FLOAT_WORD(hb,y); + hb &= 0x7fffffff; + if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} + SET_FLOAT_WORD(a,ha); /* a <- |a| */ + SET_FLOAT_WORD(b,hb); /* b <- |b| */ + if((ha-hb)>0xf000000) {return a+b;} /* x/y > 2**30 */ + k=0; + if(ha > 0x58800000) { /* a>2**50 */ + if(ha >= 0x7f800000) { /* Inf or NaN */ + w = a+b; /* for sNaN */ + if(ha == 0x7f800000) w = a; + if(hb == 0x7f800000) w = b; + return w; + } + /* scale a and b by 2**-68 */ + ha -= 0x22000000; hb -= 0x22000000; k += 68; + SET_FLOAT_WORD(a,ha); + SET_FLOAT_WORD(b,hb); + } + if(hb < 0x26800000) { /* b < 2**-50 */ + if(hb <= 0x007fffff) { /* subnormal b or 0 */ + if(hb==0) return a; + SET_FLOAT_WORD(t1,0x7e800000); /* t1=2^126 */ + b *= t1; + a *= t1; + k -= 126; + } else { /* scale a and b by 2^68 */ + ha += 0x22000000; /* a *= 2^68 */ + hb += 0x22000000; /* b *= 2^68 */ + k -= 68; + SET_FLOAT_WORD(a,ha); + SET_FLOAT_WORD(b,hb); + } + } + /* medium size a and b */ + w = a-b; + if (w>b) { + SET_FLOAT_WORD(t1,ha&0xfffff000); + t2 = a-t1; + w = sqrtf(t1*t1-(b*(-b)-t2*(a+t1))); + } else { + a = a+a; + SET_FLOAT_WORD(y1,hb&0xfffff000); + y2 = b - y1; + SET_FLOAT_WORD(t1,ha+0x00800000); + t2 = a - t1; + w = sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b))); + } + if(k!=0) { + SET_FLOAT_WORD(t1,0x3f800000+(k<<23)); + return t1*w; + } else return w; +} diff --git a/05/musl-0.6.0/src/math/e_log.c b/05/musl-0.6.0/src/math/e_log.c new file mode 100644 index 0000000..9eb0e44 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_log.c @@ -0,0 +1,131 @@ + +/* @(#)e_log.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* log(x) + * Return the logrithm of x + * + * Method : + * 1. Argument Reduction: find k and f such that + * x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * 2. Approximation of log(1+f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s + * (the values of Lg1 to Lg7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lg1*s +...+Lg7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log(1+f) = f - s*(f - R) (if f is not too large) + * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) + * + * 3. Finally, log(x) = k*ln2 + log(1+f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log(x) is NaN with signal if x < 0 (including -INF) ; + * log(+INF) is +INF; log(0) is -INF with signal; + * log(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ +ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ +two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ +Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +static const double zero = 0.0; + +double +log(double x) +{ + double hfsq,f,s,z,R,w,t1,t2,dk; + int32_t k,hx,i,j; + uint32_t lx; + + EXTRACT_WORDS(hx,lx,x); + + k=0; + if (hx < 0x00100000) { /* x < 2**-1022 */ + if (((hx&0x7fffffff)|lx)==0) + return -two54/zero; /* log(+-0)=-inf */ + if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 54; x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD(hx,x); + } + if (hx >= 0x7ff00000) return x+x; + k += (hx>>20)-1023; + hx &= 0x000fffff; + i = (hx+0x95f64)&0x100000; + SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ + k += (i>>20); + f = x-1.0; + if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ + if(f==zero) { if(k==0) return zero; else {dk=(double)k; + return dk*ln2_hi+dk*ln2_lo;} } + R = f*f*(0.5-0.33333333333333333*f); + if(k==0) return f-R; else {dk=(double)k; + return dk*ln2_hi-((R-dk*ln2_lo)-f);} + } + s = f/(2.0+f); + dk = (double)k; + z = s*s; + i = hx-0x6147a; + w = z*z; + j = 0x6b851-hx; + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + i |= j; + R = t2+t1; + if(i>0) { + hfsq=0.5*f*f; + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); + } else { + if(k==0) return f-s*(f-R); else + return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); + } +} diff --git a/05/musl-0.6.0/src/math/e_log10.c b/05/musl-0.6.0/src/math/e_log10.c new file mode 100644 index 0000000..3be179f --- /dev/null +++ b/05/musl-0.6.0/src/math/e_log10.c @@ -0,0 +1,83 @@ + +/* @(#)e_log10.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* log10(x) + * Return the base 10 logarithm of x + * + * Method : + * Let log10_2hi = leading 40 bits of log10(2) and + * log10_2lo = log10(2) - log10_2hi, + * ivln10 = 1/log(10) rounded. + * Then + * n = ilogb(x), + * if(n<0) n = n+1; + * x = scalbn(x,-n); + * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) + * + * Note 1: + * To guarantee log10(10**n)=n, where 10**n is normal, the rounding + * mode must set to Round-to-Nearest. + * Note 2: + * [1/log(10)] rounded to 53 bits has error .198 ulps; + * log10 is monotonic at all binary break points. + * + * Special cases: + * log10(x) is NaN with signal if x < 0; + * log10(+INF) is +INF with no signal; log10(0) is -INF with signal; + * log10(NaN) is that NaN with no signal; + * log10(10**N) = N for N=0,1,...,22. + * + * Constants: + * The hexadecimal values are the intended ones for the following constants. + * The decimal values may be used, provided that the compiler will convert + * from decimal to binary accurately enough to produce the hexadecimal values + * shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ +ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ +log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ +log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ + +static const double zero = 0.0; + +double +log10(double x) +{ + double y,z; + int32_t i,k,hx; + uint32_t lx; + + EXTRACT_WORDS(hx,lx,x); + + k=0; + if (hx < 0x00100000) { /* x < 2**-1022 */ + if (((hx&0x7fffffff)|lx)==0) + return -two54/zero; /* log(+-0)=-inf */ + if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 54; x *= two54; /* subnormal number, scale up x */ + GET_HIGH_WORD(hx,x); + } + if (hx >= 0x7ff00000) return x+x; + k += (hx>>20)-1023; + i = ((uint32_t)k&0x80000000)>>31; + hx = (hx&0x000fffff)|((0x3ff-i)<<20); + y = (double)(k+i); + SET_HIGH_WORD(x,hx); + z = y*log10_2lo + ivln10*log(x); + return z+y*log10_2hi; +} diff --git a/05/musl-0.6.0/src/math/e_log10f.c b/05/musl-0.6.0/src/math/e_log10f.c new file mode 100644 index 0000000..8fc5c5c --- /dev/null +++ b/05/musl-0.6.0/src/math/e_log10f.c @@ -0,0 +1,51 @@ +/* e_log10f.c -- float version of e_log10.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +two25 = 3.3554432000e+07, /* 0x4c000000 */ +ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */ +log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */ +log10_2lo = 7.9034151668e-07; /* 0x355427db */ + +static const float zero = 0.0; + +float +log10f(float x) +{ + float y,z; + int32_t i,k,hx; + + GET_FLOAT_WORD(hx,x); + + k=0; + if (hx < 0x00800000) { /* x < 2**-126 */ + if ((hx&0x7fffffff)==0) + return -two25/zero; /* log(+-0)=-inf */ + if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 25; x *= two25; /* subnormal number, scale up x */ + GET_FLOAT_WORD(hx,x); + } + if (hx >= 0x7f800000) return x+x; + k += (hx>>23)-127; + i = ((uint32_t)k&0x80000000)>>31; + hx = (hx&0x007fffff)|((0x7f-i)<<23); + y = (float)(k+i); + SET_FLOAT_WORD(x,hx); + z = y*log10_2lo + ivln10*logf(x); + return z+y*log10_2hi; +} diff --git a/05/musl-0.6.0/src/math/e_logf.c b/05/musl-0.6.0/src/math/e_logf.c new file mode 100644 index 0000000..46a8b8c --- /dev/null +++ b/05/musl-0.6.0/src/math/e_logf.c @@ -0,0 +1,81 @@ +/* e_logf.c -- float version of e_log.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ +ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ +two25 = 3.355443200e+07, /* 0x4c000000 */ +Lg1 = 6.6666668653e-01, /* 3F2AAAAB */ +Lg2 = 4.0000000596e-01, /* 3ECCCCCD */ +Lg3 = 2.8571429849e-01, /* 3E924925 */ +Lg4 = 2.2222198546e-01, /* 3E638E29 */ +Lg5 = 1.8183572590e-01, /* 3E3A3325 */ +Lg6 = 1.5313838422e-01, /* 3E1CD04F */ +Lg7 = 1.4798198640e-01; /* 3E178897 */ + +static const float zero = 0.0; + +float +logf(float x) +{ + float hfsq,f,s,z,R,w,t1,t2,dk; + int32_t k,ix,i,j; + + GET_FLOAT_WORD(ix,x); + + k=0; + if (ix < 0x00800000) { /* x < 2**-126 */ + if ((ix&0x7fffffff)==0) + return -two25/zero; /* log(+-0)=-inf */ + if (ix<0) return (x-x)/zero; /* log(-#) = NaN */ + k -= 25; x *= two25; /* subnormal number, scale up x */ + GET_FLOAT_WORD(ix,x); + } + if (ix >= 0x7f800000) return x+x; + k += (ix>>23)-127; + ix &= 0x007fffff; + i = (ix+(0x95f64<<3))&0x800000; + SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */ + k += (i>>23); + f = x-(float)1.0; + if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */ + if(f==zero) { if(k==0) return zero; else {dk=(float)k; + return dk*ln2_hi+dk*ln2_lo;} } + R = f*f*((float)0.5-(float)0.33333333333333333*f); + if(k==0) return f-R; else {dk=(float)k; + return dk*ln2_hi-((R-dk*ln2_lo)-f);} + } + s = f/((float)2.0+f); + dk = (float)k; + z = s*s; + i = ix-(0x6147a<<3); + w = z*z; + j = (0x6b851<<3)-ix; + t1= w*(Lg2+w*(Lg4+w*Lg6)); + t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); + i |= j; + R = t2+t1; + if(i>0) { + hfsq=(float)0.5*f*f; + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); + } else { + if(k==0) return f-s*(f-R); else + return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); + } +} diff --git a/05/musl-0.6.0/src/math/e_pow.c b/05/musl-0.6.0/src/math/e_pow.c new file mode 100644 index 0000000..aad2428 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_pow.c @@ -0,0 +1,300 @@ +/* @(#)e_pow.c 1.5 04/04/22 SMI */ +/* + * ==================================================== + * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* pow(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 53-24 = 29 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + * pow(x,y) returns x**y nearly rounded. In particular + * pow(integer,integer) + * always returns the correct integer provided it is + * representable. + * + * Constants : + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +bp[] = {1.0, 1.5,}, +dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ +dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ +zero = 0.0, +one = 1.0, +two = 2.0, +two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ +huge = 1.0e300, +tiny = 1.0e-300, + /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ +L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ +L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ +L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ +L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ +L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ +L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ +P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ +P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ +P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ +P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ +P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ +lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ +lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ +lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ +ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ +cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ +cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ +cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ +ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ +ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ +ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ + +double +pow(double x, double y) +{ + double z,ax,z_h,z_l,p_h,p_l; + double y1,t1,t2,r,s,t,u,v,w; + int32_t i,j,k,yisint,n; + int32_t hx,hy,ix,iy; + uint32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + ix = hx&0x7fffffff; iy = hy&0x7fffffff; + + /* y==zero: x**0 = 1 */ + if((iy|ly)==0) return one; + + /* +-NaN return x+y */ + if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || + iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) + return x+y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if(hx<0) { + if(iy>=0x43400000) yisint = 2; /* even integer y */ + else if(iy>=0x3ff00000) { + k = (iy>>20)-0x3ff; /* exponent */ + if(k>20) { + j = ly>>(52-k); + if((j<<(52-k))==ly) yisint = 2-(j&1); + } else if(ly==0) { + j = iy>>(20-k); + if((j<<(20-k))==iy) yisint = 2-(j&1); + } + } + } + + /* special value of y */ + if(ly==0) { + if (iy==0x7ff00000) { /* y is +-inf */ + if(((ix-0x3ff00000)|lx)==0) + return y - y; /* inf**+-1 is NaN */ + else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ + return (hy>=0)? y: zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy<0)?-y: zero; + } + if(iy==0x3ff00000) { /* y is +-1 */ + if(hy<0) return one/x; else return x; + } + if(hy==0x40000000) return x*x; /* y is 2 */ + if(hy==0x3fe00000) { /* y is 0.5 */ + if(hx>=0) /* x >= +0 */ + return sqrt(x); + } + } + + ax = fabs(x); + /* special value of x */ + if(lx==0) { + if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ + z = ax; /*x is +-0,+-inf,+-1*/ + if(hy<0) z = one/z; /* z = (1/|x|) */ + if(hx<0) { + if(((ix-0x3ff00000)|yisint)==0) { + z = (z-z)/(z-z); /* (-1)**non-int is NaN */ + } else if(yisint==1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be + n = (hx>>31)+1; + but ANSI C says a right shift of a signed negative quantity is + implementation defined. */ + n = ((uint32_t)hx>>31)-1; + + /* (x<0)**(non-int) is NaN */ + if((n|yisint)==0) return (x-x)/(x-x); + + s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ + if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ + + /* |y| is huge */ + if(iy>0x41e00000) { /* if |y| > 2**31 */ + if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ + if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; + if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; + } + /* over/underflow if x is not close to one */ + if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny; + if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny; + /* now |1-x| is tiny <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = ax-one; /* t has 20 trailing zeros */ + w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); + u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ + v = t*ivln2_l-w*ivln2; + t1 = u+v; + SET_LOW_WORD(t1,0); + t2 = v-(t1-u); + } else { + double ss,s2,s_h,s_l,t_h,t_l; + n = 0; + /* take care subnormal number */ + if(ix<0x00100000) + {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } + n += ((ix)>>20)-0x3ff; + j = ix&0x000fffff; + /* determine interval */ + ix = j|0x3ff00000; /* normalize ix */ + if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ + else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ + else {k=0;n+=1;ix -= 0x00100000;} + SET_HIGH_WORD(ax,ix); + + /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ + v = one/(ax+bp[k]); + ss = u*v; + s_h = ss; + SET_LOW_WORD(s_h,0); + /* t_h=ax+bp[k] High */ + t_h = zero; + SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); + t_l = ax - (t_h-bp[k]); + s_l = v*((u-s_h*t_h)-s_h*t_l); + /* compute log(ax) */ + s2 = ss*ss; + r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); + r += s_l*(s_h+ss); + s2 = s_h*s_h; + t_h = 3.0+s2+r; + SET_LOW_WORD(t_h,0); + t_l = r-((t_h-3.0)-s2); + /* u+v = ss*(1+...) */ + u = s_h*t_h; + v = s_l*t_h+t_l*ss; + /* 2/(3log2)*(ss+...) */ + p_h = u+v; + SET_LOW_WORD(p_h,0); + p_l = v-(p_h-u); + z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = cp_l*p_h+p_l*cp+dp_l[k]; + /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = (double)n; + t1 = (((z_h+z_l)+dp_h[k])+t); + SET_LOW_WORD(t1,0); + t2 = z_l-(((t1-t)-dp_h[k])-z_h); + } + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + y1 = y; + SET_LOW_WORD(y1,0); + p_l = (y-y1)*t1+y*t2; + p_h = y1*t1; + z = p_l+p_h; + EXTRACT_WORDS(j,i,z); + if (j>=0x40900000) { /* z >= 1024 */ + if(((j-0x40900000)|i)!=0) /* if z > 1024 */ + return s*huge*huge; /* overflow */ + else { + if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ + } + } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ + if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ + return s*tiny*tiny; /* underflow */ + else { + if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ + } + } + /* + * compute 2**(p_h+p_l) + */ + i = j&0x7fffffff; + k = (i>>20)-0x3ff; + n = 0; + if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ + n = j+(0x00100000>>(k+1)); + k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ + t = zero; + SET_HIGH_WORD(t,n&~(0x000fffff>>k)); + n = ((n&0x000fffff)|0x00100000)>>(20-k); + if(j<0) n = -n; + p_h -= t; + } + t = p_l+p_h; + SET_LOW_WORD(t,0); + u = t*lg2_h; + v = (p_l-(t-p_h))*lg2+t*lg2_l; + z = u+v; + w = v-(z-u); + t = z*z; + t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + r = (z*t1)/(t1-two)-(w+z*w); + z = one-(r-z); + GET_HIGH_WORD(j,z); + j += (n<<20); + if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ + else SET_HIGH_WORD(z,j); + return s*z; +} diff --git a/05/musl-0.6.0/src/math/e_powf.c b/05/musl-0.6.0/src/math/e_powf.c new file mode 100644 index 0000000..ae61c24 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_powf.c @@ -0,0 +1,243 @@ +/* e_powf.c -- float version of e_pow.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +bp[] = {1.0, 1.5,}, +dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */ +dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */ +zero = 0.0, +one = 1.0, +two = 2.0, +two24 = 16777216.0, /* 0x4b800000 */ +huge = 1.0e30, +tiny = 1.0e-30, + /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ +L1 = 6.0000002384e-01, /* 0x3f19999a */ +L2 = 4.2857143283e-01, /* 0x3edb6db7 */ +L3 = 3.3333334327e-01, /* 0x3eaaaaab */ +L4 = 2.7272811532e-01, /* 0x3e8ba305 */ +L5 = 2.3066075146e-01, /* 0x3e6c3255 */ +L6 = 2.0697501302e-01, /* 0x3e53f142 */ +P1 = 1.6666667163e-01, /* 0x3e2aaaab */ +P2 = -2.7777778450e-03, /* 0xbb360b61 */ +P3 = 6.6137559770e-05, /* 0x388ab355 */ +P4 = -1.6533901999e-06, /* 0xb5ddea0e */ +P5 = 4.1381369442e-08, /* 0x3331bb4c */ +lg2 = 6.9314718246e-01, /* 0x3f317218 */ +lg2_h = 6.93145752e-01, /* 0x3f317200 */ +lg2_l = 1.42860654e-06, /* 0x35bfbe8c */ +ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */ +cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */ +cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */ +cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */ +ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */ +ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/ +ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/ + +float +powf(float x, float y) +{ + float z,ax,z_h,z_l,p_h,p_l; + float y1,t1,t2,r,s,sn,t,u,v,w; + int32_t i,j,k,yisint,n; + int32_t hx,hy,ix,iy,is; + + GET_FLOAT_WORD(hx,x); + GET_FLOAT_WORD(hy,y); + ix = hx&0x7fffffff; iy = hy&0x7fffffff; + + /* y==zero: x**0 = 1 */ + if(iy==0) return one; + + /* +-NaN return x+y */ + if(ix > 0x7f800000 || + iy > 0x7f800000) + return x+y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if(hx<0) { + if(iy>=0x4b800000) yisint = 2; /* even integer y */ + else if(iy>=0x3f800000) { + k = (iy>>23)-0x7f; /* exponent */ + j = iy>>(23-k); + if((j<<(23-k))==iy) yisint = 2-(j&1); + } + } + + /* special value of y */ + if (iy==0x7f800000) { /* y is +-inf */ + if (ix==0x3f800000) + return y - y; /* inf**+-1 is NaN */ + else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */ + return (hy>=0)? y: zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy<0)?-y: zero; + } + if(iy==0x3f800000) { /* y is +-1 */ + if(hy<0) return one/x; else return x; + } + if(hy==0x40000000) return x*x; /* y is 2 */ + if(hy==0x3f000000) { /* y is 0.5 */ + if(hx>=0) /* x >= +0 */ + return sqrtf(x); + } + + ax = fabsf(x); + /* special value of x */ + if(ix==0x7f800000||ix==0||ix==0x3f800000){ + z = ax; /*x is +-0,+-inf,+-1*/ + if(hy<0) z = one/z; /* z = (1/|x|) */ + if(hx<0) { + if(((ix-0x3f800000)|yisint)==0) { + z = (z-z)/(z-z); /* (-1)**non-int is NaN */ + } else if(yisint==1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + + n = ((uint32_t)hx>>31)-1; + + /* (x<0)**(non-int) is NaN */ + if((n|yisint)==0) return (x-x)/(x-x); + + sn = one; /* s (sign of result -ve**odd) = -1 else = 1 */ + if((n|(yisint-1))==0) sn = -one;/* (-ve)**(odd int) */ + + /* |y| is huge */ + if(iy>0x4d000000) { /* if |y| > 2**27 */ + /* over/underflow if x is not close to one */ + if(ix<0x3f7ffff8) return (hy<0)? sn*huge*huge:sn*tiny*tiny; + if(ix>0x3f800007) return (hy>0)? sn*huge*huge:sn*tiny*tiny; + /* now |1-x| is tiny <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = ax-1; /* t has 20 trailing zeros */ + w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25)); + u = ivln2_h*t; /* ivln2_h has 16 sig. bits */ + v = t*ivln2_l-w*ivln2; + t1 = u+v; + GET_FLOAT_WORD(is,t1); + SET_FLOAT_WORD(t1,is&0xfffff000); + t2 = v-(t1-u); + } else { + float s2,s_h,s_l,t_h,t_l; + n = 0; + /* take care subnormal number */ + if(ix<0x00800000) + {ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); } + n += ((ix)>>23)-0x7f; + j = ix&0x007fffff; + /* determine interval */ + ix = j|0x3f800000; /* normalize ix */ + if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */ + else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */ + else {k=0;n+=1;ix -= 0x00800000;} + SET_FLOAT_WORD(ax,ix); + + /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ + v = one/(ax+bp[k]); + s = u*v; + s_h = s; + GET_FLOAT_WORD(is,s_h); + SET_FLOAT_WORD(s_h,is&0xfffff000); + /* t_h=ax+bp[k] High */ + is = ((ix>>1)&0xfffff000)|0x20000000; + SET_FLOAT_WORD(t_h,is+0x00400000+(k<<21)); + t_l = ax - (t_h-bp[k]); + s_l = v*((u-s_h*t_h)-s_h*t_l); + /* compute log(ax) */ + s2 = s*s; + r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); + r += s_l*(s_h+s); + s2 = s_h*s_h; + t_h = (float)3.0+s2+r; + GET_FLOAT_WORD(is,t_h); + SET_FLOAT_WORD(t_h,is&0xfffff000); + t_l = r-((t_h-(float)3.0)-s2); + /* u+v = s*(1+...) */ + u = s_h*t_h; + v = s_l*t_h+t_l*s; + /* 2/(3log2)*(s+...) */ + p_h = u+v; + GET_FLOAT_WORD(is,p_h); + SET_FLOAT_WORD(p_h,is&0xfffff000); + p_l = v-(p_h-u); + z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = cp_l*p_h+p_l*cp+dp_l[k]; + /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = (float)n; + t1 = (((z_h+z_l)+dp_h[k])+t); + GET_FLOAT_WORD(is,t1); + SET_FLOAT_WORD(t1,is&0xfffff000); + t2 = z_l-(((t1-t)-dp_h[k])-z_h); + } + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + GET_FLOAT_WORD(is,y); + SET_FLOAT_WORD(y1,is&0xfffff000); + p_l = (y-y1)*t1+y*t2; + p_h = y1*t1; + z = p_l+p_h; + GET_FLOAT_WORD(j,z); + if (j>0x43000000) /* if z > 128 */ + return sn*huge*huge; /* overflow */ + else if (j==0x43000000) { /* if z == 128 */ + if(p_l+ovt>z-p_h) return sn*huge*huge; /* overflow */ + } + else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */ + return sn*tiny*tiny; /* underflow */ + else if (j==0xc3160000){ /* z == -150 */ + if(p_l<=z-p_h) return sn*tiny*tiny; /* underflow */ + } + /* + * compute 2**(p_h+p_l) + */ + i = j&0x7fffffff; + k = (i>>23)-0x7f; + n = 0; + if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */ + n = j+(0x00800000>>(k+1)); + k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */ + SET_FLOAT_WORD(t,n&~(0x007fffff>>k)); + n = ((n&0x007fffff)|0x00800000)>>(23-k); + if(j<0) n = -n; + p_h -= t; + } + t = p_l+p_h; + GET_FLOAT_WORD(is,t); + SET_FLOAT_WORD(t,is&0xffff8000); + u = t*lg2_h; + v = (p_l-(t-p_h))*lg2+t*lg2_l; + z = u+v; + w = v-(z-u); + t = z*z; + t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); + r = (z*t1)/(t1-two)-(w+z*w); + z = one-(r-z); + GET_FLOAT_WORD(j,z); + j += (n<<23); + if((j>>23)<=0) z = scalbnf(z,n); /* subnormal output */ + else SET_FLOAT_WORD(z,j); + return sn*z; +} diff --git a/05/musl-0.6.0/src/math/e_rem_pio2.c b/05/musl-0.6.0/src/math/e_rem_pio2.c new file mode 100644 index 0000000..9eee36a --- /dev/null +++ b/05/musl-0.6.0/src/math/e_rem_pio2.c @@ -0,0 +1,163 @@ + +/* @(#)e_rem_pio2.c 1.4 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + * + */ + +/* __ieee754_rem_pio2(x,y) + * + * return the remainder of x rem pi/2 in y[0]+y[1] + * use __kernel_rem_pio2() + */ + +#include <math.h> +#include "math_private.h" + +/* + * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi + */ +static const int32_t two_over_pi[] = { +0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, +0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, +0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, +0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, +0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, +0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, +0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, +0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, +0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, +0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, +0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, +}; + +static const int32_t npio2_hw[] = { +0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, +0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, +0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, +0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, +0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, +0x404858EB, 0x404921FB, +}; + +/* + * invpio2: 53 bits of 2/pi + * pio2_1: first 33 bit of pi/2 + * pio2_1t: pi/2 - pio2_1 + * pio2_2: second 33 bit of pi/2 + * pio2_2t: pi/2 - (pio2_1+pio2_2) + * pio2_3: third 33 bit of pi/2 + * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) + */ + +static const double +zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ +half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ +pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ +pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ +pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ +pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ +pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ +pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ + +int32_t __ieee754_rem_pio2(double x, double *y) +{ + double z,w,t,r,fn; + double tx[3]; + int32_t e0,i,j,nx,n,ix,hx; + uint32_t low; + + GET_HIGH_WORD(hx,x); /* high word of x */ + ix = hx&0x7fffffff; + if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ + {y[0] = x; y[1] = 0; return 0;} + if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ + if(hx>0) { + z = x - pio2_1; + if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ + y[0] = z - pio2_1t; + y[1] = (z-y[0])-pio2_1t; + } else { /* near pi/2, use 33+33+53 bit pi */ + z -= pio2_2; + y[0] = z - pio2_2t; + y[1] = (z-y[0])-pio2_2t; + } + return 1; + } else { /* negative x */ + z = x + pio2_1; + if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ + y[0] = z + pio2_1t; + y[1] = (z-y[0])+pio2_1t; + } else { /* near pi/2, use 33+33+53 bit pi */ + z += pio2_2; + y[0] = z + pio2_2t; + y[1] = (z-y[0])+pio2_2t; + } + return -1; + } + } + if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ + t = fabs(x); + n = (int32_t) (t*invpio2+half); + fn = (double)n; + r = t-fn*pio2_1; + w = fn*pio2_1t; /* 1st round good to 85 bit */ + if(n<32&&ix!=npio2_hw[n-1]) { + y[0] = r-w; /* quick check no cancellation */ + } else { + uint32_t high; + j = ix>>20; + y[0] = r-w; + GET_HIGH_WORD(high,y[0]); + i = j-((high>>20)&0x7ff); + if(i>16) { /* 2nd iteration needed, good to 118 */ + t = r; + w = fn*pio2_2; + r = t-w; + w = fn*pio2_2t-((t-r)-w); + y[0] = r-w; + GET_HIGH_WORD(high,y[0]); + i = j-((high>>20)&0x7ff); + if(i>49) { /* 3rd iteration need, 151 bits acc */ + t = r; /* will cover all possible cases */ + w = fn*pio2_3; + r = t-w; + w = fn*pio2_3t-((t-r)-w); + y[0] = r-w; + } + } + } + y[1] = (r-y[0])-w; + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + else return n; + } + /* + * all other (large) arguments + */ + if(ix>=0x7ff00000) { /* x is inf or NaN */ + y[0]=y[1]=x-x; return 0; + } + /* set z = scalbn(|x|,ilogb(x)-23) */ + GET_LOW_WORD(low,x); + e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */ + INSERT_WORDS(z, ix - ((int32_t)(e0<<20)), low); + for(i=0;i<2;i++) { + tx[i] = (double)((int32_t)(z)); + z = (z-tx[i])*two24; + } + tx[2] = z; + nx = 3; + while(tx[nx-1]==zero) nx--; /* skip zero term */ + n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + return n; +} diff --git a/05/musl-0.6.0/src/math/e_rem_pio2f.c b/05/musl-0.6.0/src/math/e_rem_pio2f.c new file mode 100644 index 0000000..4992ea0 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_rem_pio2f.c @@ -0,0 +1,175 @@ +/* e_rem_pio2f.c -- float version of e_rem_pio2.c + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_rem_pio2f(x,y) + * + * return the remainder of x rem pi/2 in y[0]+y[1] + * use __kernel_rem_pio2f() + */ + +#include <math.h> +#include "math_private.h" + +/* + * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi + */ +static const int32_t two_over_pi[] = { +0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC, +0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62, +0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63, +0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A, +0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09, +0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29, +0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44, +0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41, +0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C, +0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8, +0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11, +0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF, +0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E, +0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5, +0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92, +0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08, +0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0, +0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3, +0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85, +0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80, +0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA, +0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B, +}; + +/* This array is like the one in e_rem_pio2.c, but the numbers are + single precision and the last 8 bits are forced to 0. */ +static const int32_t npio2_hw[] = { +0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00, +0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00, +0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100, +0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00, +0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00, +0x4242c700, 0x42490f00 +}; + +/* + * invpio2: 24 bits of 2/pi + * pio2_1: first 17 bit of pi/2 + * pio2_1t: pi/2 - pio2_1 + * pio2_2: second 17 bit of pi/2 + * pio2_2t: pi/2 - (pio2_1+pio2_2) + * pio2_3: third 17 bit of pi/2 + * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) + */ + +static const float +zero = 0.0000000000e+00, /* 0x00000000 */ +half = 5.0000000000e-01, /* 0x3f000000 */ +two8 = 2.5600000000e+02, /* 0x43800000 */ +invpio2 = 6.3661980629e-01, /* 0x3f22f984 */ +pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */ +pio2_1t = 1.0804334124e-05, /* 0x37354443 */ +pio2_2 = 1.0804273188e-05, /* 0x37354400 */ +pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */ +pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */ +pio2_3t = 6.1232342629e-17; /* 0x248d3132 */ + +int32_t __ieee754_rem_pio2f(float x, float *y) +{ + float z,w,t,r,fn; + float tx[3]; + int32_t e0,i,j,nx,n,ix,hx; + + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */ + {y[0] = x; y[1] = 0; return 0;} + if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */ + if(hx>0) { + z = x - pio2_1; + if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ + y[0] = z - pio2_1t; + y[1] = (z-y[0])-pio2_1t; + } else { /* near pi/2, use 24+24+24 bit pi */ + z -= pio2_2; + y[0] = z - pio2_2t; + y[1] = (z-y[0])-pio2_2t; + } + return 1; + } else { /* negative x */ + z = x + pio2_1; + if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ + y[0] = z + pio2_1t; + y[1] = (z-y[0])+pio2_1t; + } else { /* near pi/2, use 24+24+24 bit pi */ + z += pio2_2; + y[0] = z + pio2_2t; + y[1] = (z-y[0])+pio2_2t; + } + return -1; + } + } + if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */ + t = fabsf(x); + n = (int32_t) (t*invpio2+half); + fn = (float)n; + r = t-fn*pio2_1; + w = fn*pio2_1t; /* 1st round good to 40 bit */ + if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) { + y[0] = r-w; /* quick check no cancellation */ + } else { + uint32_t high; + j = ix>>23; + y[0] = r-w; + GET_FLOAT_WORD(high,y[0]); + i = j-((high>>23)&0xff); + if(i>8) { /* 2nd iteration needed, good to 57 */ + t = r; + w = fn*pio2_2; + r = t-w; + w = fn*pio2_2t-((t-r)-w); + y[0] = r-w; + GET_FLOAT_WORD(high,y[0]); + i = j-((high>>23)&0xff); + if(i>25) { /* 3rd iteration need, 74 bits acc */ + t = r; /* will cover all possible cases */ + w = fn*pio2_3; + r = t-w; + w = fn*pio2_3t-((t-r)-w); + y[0] = r-w; + } + } + } + y[1] = (r-y[0])-w; + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + else return n; + } + /* + * all other (large) arguments + */ + if(ix>=0x7f800000) { /* x is inf or NaN */ + y[0]=y[1]=x-x; return 0; + } + /* set z = scalbn(|x|,ilogb(x)-7) */ + e0 = (ix>>23)-134; /* e0 = ilogb(z)-7; */ + SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23))); + for(i=0;i<2;i++) { + tx[i] = (float)((int32_t)(z)); + z = (z-tx[i])*two8; + } + tx[2] = z; + nx = 3; + while(tx[nx-1]==zero) nx--; /* skip zero term */ + n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi); + if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} + return n; +} diff --git a/05/musl-0.6.0/src/math/e_remainder.c b/05/musl-0.6.0/src/math/e_remainder.c new file mode 100644 index 0000000..9cb5691 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_remainder.c @@ -0,0 +1,69 @@ + +/* @(#)e_remainder.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* remainder(x,p) + * Return : + * returns x REM p = x - [x/p]*p as if in infinite + * precise arithmetic, where [x/p] is the (infinite bit) + * integer nearest x/p (in half way case choose the even one). + * Method : + * Based on fmod() return x-[x/p]chopped*p exactlp. + */ + +#include <math.h> +#include "math_private.h" + +static const double zero = 0.0; + + +double +remainder(double x, double p) +{ + int32_t hx,hp; + uint32_t sx,lx,lp; + double p_half; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hp,lp,p); + sx = hx&0x80000000; + hp &= 0x7fffffff; + hx &= 0x7fffffff; + + /* purge off exception values */ + if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ + if((hx>=0x7ff00000)|| /* x not finite */ + ((hp>=0x7ff00000)&& /* p is NaN */ + (((hp-0x7ff00000)|lp)!=0))) + return (x*p)/(x*p); + + + if (hp<=0x7fdfffff) x = fmod(x,p+p); /* now x < 2p */ + if (((hx-hp)|(lx-lp))==0) return zero*x; + x = fabs(x); + p = fabs(p); + if (hp<0x00200000) { + if(x+x>p) { + x-=p; + if(x+x>=p) x -= p; + } + } else { + p_half = 0.5*p; + if(x>p_half) { + x-=p; + if(x>=p_half) x -= p; + } + } + GET_HIGH_WORD(hx,x); + SET_HIGH_WORD(x,hx^sx); + return x; +} diff --git a/05/musl-0.6.0/src/math/e_remainderf.c b/05/musl-0.6.0/src/math/e_remainderf.c new file mode 100644 index 0000000..c292367 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_remainderf.c @@ -0,0 +1,61 @@ +/* e_remainderf.c -- float version of e_remainder.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float zero = 0.0; + + +float +remainderf(float x, float p) +{ + int32_t hx,hp; + uint32_t sx; + float p_half; + + GET_FLOAT_WORD(hx,x); + GET_FLOAT_WORD(hp,p); + sx = hx&0x80000000; + hp &= 0x7fffffff; + hx &= 0x7fffffff; + + /* purge off exception values */ + if(hp==0) return (x*p)/(x*p); /* p = 0 */ + if((hx>=0x7f800000)|| /* x not finite */ + ((hp>0x7f800000))) /* p is NaN */ + return (x*p)/(x*p); + + + if (hp<=0x7effffff) x = fmodf(x,p+p); /* now x < 2p */ + if ((hx-hp)==0) return zero*x; + x = fabsf(x); + p = fabsf(p); + if (hp<0x01000000) { + if(x+x>p) { + x-=p; + if(x+x>=p) x -= p; + } + } else { + p_half = (float)0.5*p; + if(x>p_half) { + x-=p; + if(x>=p_half) x -= p; + } + } + GET_FLOAT_WORD(hx,x); + SET_FLOAT_WORD(x,hx^sx); + return x; +} diff --git a/05/musl-0.6.0/src/math/e_scalb.c b/05/musl-0.6.0/src/math/e_scalb.c new file mode 100644 index 0000000..cee2b44 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_scalb.c @@ -0,0 +1,35 @@ + +/* @(#)e_scalb.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * scalb(x, fn) is provide for + * passing various standard test suite. One + * should use scalbn() instead. + */ + +#include <math.h> +#include "math_private.h" + +double +scalb(double x, double fn) +{ + if (isnan(x)||isnan(fn)) return x*fn; + if (!isfinite(fn)) { + if(fn>0.0) return x*fn; + else return x/(-fn); + } + if (rint(fn)!=fn) return (fn-fn)/(fn-fn); + if ( fn > 65000.0) return scalbn(x, 65000); + if (-fn > 65000.0) return scalbn(x,-65000); + return scalbn(x,(int)fn); +} diff --git a/05/musl-0.6.0/src/math/e_scalbf.c b/05/musl-0.6.0/src/math/e_scalbf.c new file mode 100644 index 0000000..de7d7f6 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_scalbf.c @@ -0,0 +1,31 @@ +/* e_scalbf.c -- float version of e_scalb.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +float +scalbf(float x, float fn) +{ + if (isnan(x)||isnan(fn)) return x*fn; + if (!isfinite(fn)) { + if(fn>(float)0.0) return x*fn; + else return x/(-fn); + } + if (rintf(fn)!=fn) return (fn-fn)/(fn-fn); + if ( fn > (float)65000.0) return scalbnf(x, 65000); + if (-fn > (float)65000.0) return scalbnf(x,-65000); + return scalbnf(x,(int)fn); +} diff --git a/05/musl-0.6.0/src/math/e_sinh.c b/05/musl-0.6.0/src/math/e_sinh.c new file mode 100644 index 0000000..3a57427 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_sinh.c @@ -0,0 +1,75 @@ + +/* @(#)e_sinh.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* sinh(x) + * Method : + * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 + * 1. Replace x by |x| (sinh(-x) = -sinh(x)). + * 2. + * E + E/(E+1) + * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) + * 2 + * + * 22 <= x <= lnovft : sinh(x) := exp(x)/2 + * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) + * ln2ovft < x : sinh(x) := x*shuge (overflow) + * + * Special cases: + * sinh(x) is |x| if x is +INF, -INF, or NaN. + * only sinh(0)=0 is exact for finite x. + */ + +#include <math.h> +#include "math_private.h" + +static const double one = 1.0, shuge = 1.0e307; + +double +sinh(double x) +{ + double t,w,h; + int32_t ix,jx; + uint32_t lx; + + /* High word of |x|. */ + GET_HIGH_WORD(jx,x); + ix = jx&0x7fffffff; + + /* x is INF or NaN */ + if(ix>=0x7ff00000) return x+x; + + h = 0.5; + if (jx<0) h = -h; + /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ + if (ix < 0x40360000) { /* |x|<22 */ + if (ix<0x3e300000) /* |x|<2**-28 */ + if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ + t = expm1(fabs(x)); + if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one)); + return h*(t+t/(t+one)); + } + + /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ + if (ix < 0x40862E42) return h*exp(fabs(x)); + + /* |x| in [log(maxdouble), overflowthresold] */ + GET_LOW_WORD(lx,x); + if (ix<0x408633CE || ((ix==0x408633ce)&&(lx<=(uint32_t)0x8fb9f87d))) { + w = exp(0.5*fabs(x)); + t = h*w; + return t*w; + } + + /* |x| > overflowthresold, sinh(x) overflow */ + return x*shuge; +} diff --git a/05/musl-0.6.0/src/math/e_sinhf.c b/05/musl-0.6.0/src/math/e_sinhf.c new file mode 100644 index 0000000..fe60608 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_sinhf.c @@ -0,0 +1,56 @@ +/* e_sinhf.c -- float version of e_sinh.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one = 1.0, shuge = 1.0e37; + +float +sinhf(float x) +{ + float t,w,h; + int32_t ix,jx; + + GET_FLOAT_WORD(jx,x); + ix = jx&0x7fffffff; + + /* x is INF or NaN */ + if(ix>=0x7f800000) return x+x; + + h = 0.5; + if (jx<0) h = -h; + /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ + if (ix < 0x41b00000) { /* |x|<22 */ + if (ix<0x31800000) /* |x|<2**-28 */ + if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ + t = expm1f(fabsf(x)); + if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one)); + return h*(t+t/(t+one)); + } + + /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ + if (ix < 0x42b17180) return h*expf(fabsf(x)); + + /* |x| in [log(maxdouble), overflowthresold] */ + if (ix<=0x42b2d4fc) { + w = expf((float)0.5*fabsf(x)); + t = h*w; + return t*w; + } + + /* |x| > overflowthresold, sinh(x) overflow */ + return x*shuge; +} diff --git a/05/musl-0.6.0/src/math/e_sqrt.c b/05/musl-0.6.0/src/math/e_sqrt.c new file mode 100644 index 0000000..2bc6874 --- /dev/null +++ b/05/musl-0.6.0/src/math/e_sqrt.c @@ -0,0 +1,442 @@ + +/* @(#)e_sqrt.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* sqrt(x) + * Return correctly rounded sqrt. + * ------------------------------------------ + * | Use the hardware sqrt if you have one | + * ------------------------------------------ + * Method: + * Bit by bit method using integer arithmetic. (Slow, but portable) + * 1. Normalization + * Scale x to y in [1,4) with even powers of 2: + * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then + * sqrt(x) = 2^k * sqrt(y) + * 2. Bit by bit computation + * Let q = sqrt(y) truncated to i bit after binary point (q = 1), + * i 0 + * i+1 2 + * s = 2*q , and y = 2 * ( y - q ). (1) + * i i i i + * + * To compute q from q , one checks whether + * i+1 i + * + * -(i+1) 2 + * (q + 2 ) <= y. (2) + * i + * -(i+1) + * If (2) is false, then q = q ; otherwise q = q + 2 . + * i+1 i i+1 i + * + * With some algebric manipulation, it is not difficult to see + * that (2) is equivalent to + * -(i+1) + * s + 2 <= y (3) + * i i + * + * The advantage of (3) is that s and y can be computed by + * i i + * the following recurrence formula: + * if (3) is false + * + * s = s , y = y ; (4) + * i+1 i i+1 i + * + * otherwise, + * -i -(i+1) + * s = s + 2 , y = y - s - 2 (5) + * i+1 i i+1 i i + * + * One may easily use induction to prove (4) and (5). + * Note. Since the left hand side of (3) contain only i+2 bits, + * it does not necessary to do a full (53-bit) comparison + * in (3). + * 3. Final rounding + * After generating the 53 bits result, we compute one more bit. + * Together with the remainder, we can decide whether the + * result is exact, bigger than 1/2ulp, or less than 1/2ulp + * (it will never equal to 1/2ulp). + * The rounding mode can be detected by checking whether + * huge + tiny is equal to huge, and whether huge - tiny is + * equal to huge for some floating point number "huge" and "tiny". + * + * Special cases: + * sqrt(+-0) = +-0 ... exact + * sqrt(inf) = inf + * sqrt(-ve) = NaN ... with invalid signal + * sqrt(NaN) = NaN ... with invalid signal for signaling NaN + * + * Other methods : see the appended file at the end of the program below. + *--------------- + */ + +#include <math.h> +#include "math_private.h" + +static const double one = 1.0, tiny=1.0e-300; + +double +sqrt(double x) +{ + double z; + int32_t sign = (int)0x80000000; + int32_t ix0,s0,q,m,t,i; + uint32_t r,t1,s1,ix1,q1; + + EXTRACT_WORDS(ix0,ix1,x); + + /* take care of Inf and NaN */ + if((ix0&0x7ff00000)==0x7ff00000) { + return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf + sqrt(-inf)=sNaN */ + } + /* take care of zero */ + if(ix0<=0) { + if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ + else if(ix0<0) + return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ + } + /* normalize x */ + m = (ix0>>20); + if(m==0) { /* subnormal x */ + while(ix0==0) { + m -= 21; + ix0 |= (ix1>>11); ix1 <<= 21; + } + for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; + m -= i-1; + ix0 |= (ix1>>(32-i)); + ix1 <<= i; + } + m -= 1023; /* unbias exponent */ + ix0 = (ix0&0x000fffff)|0x00100000; + if(m&1){ /* odd m, double x to make it even */ + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + } + m >>= 1; /* m = [m/2] */ + + /* generate sqrt(x) bit by bit */ + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ + r = 0x00200000; /* r = moving bit from right to left */ + + while(r!=0) { + t = s0+r; + if(t<=ix0) { + s0 = t+r; + ix0 -= t; + q += r; + } + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + r>>=1; + } + + r = sign; + while(r!=0) { + t1 = s1+r; + t = s0; + if((t<ix0)||((t==ix0)&&(t1<=ix1))) { + s1 = t1+r; + if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; + ix0 -= t; + if (ix1 < t1) ix0 -= 1; + ix1 -= t1; + q1 += r; + } + ix0 += ix0 + ((ix1&sign)>>31); + ix1 += ix1; + r>>=1; + } + + /* use floating add to find out rounding direction */ + if((ix0|ix1)!=0) { + z = one-tiny; /* trigger inexact flag */ + if (z>=one) { + z = one+tiny; + if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;} + else if (z>one) { + if (q1==(uint32_t)0xfffffffe) q+=1; + q1+=2; + } else + q1 += (q1&1); + } + } + ix0 = (q>>1)+0x3fe00000; + ix1 = q1>>1; + if ((q&1)==1) ix1 |= sign; + ix0 += (m <<20); + INSERT_WORDS(z,ix0,ix1); + return z; +} + +/* +Other methods (use floating-point arithmetic) +------------- +(This is a copy of a drafted paper by Prof W. Kahan +and K.C. Ng, written in May, 1986) + + Two algorithms are given here to implement sqrt(x) + (IEEE double precision arithmetic) in software. + Both supply sqrt(x) correctly rounded. The first algorithm (in + Section A) uses newton iterations and involves four divisions. + The second one uses reciproot iterations to avoid division, but + requires more multiplications. Both algorithms need the ability + to chop results of arithmetic operations instead of round them, + and the INEXACT flag to indicate when an arithmetic operation + is executed exactly with no roundoff error, all part of the + standard (IEEE 754-1985). The ability to perform shift, add, + subtract and logical AND operations upon 32-bit words is needed + too, though not part of the standard. + +A. sqrt(x) by Newton Iteration + + (1) Initial approximation + + Let x0 and x1 be the leading and the trailing 32-bit words of + a floating point number x (in IEEE double format) respectively + + 1 11 52 ...widths + ------------------------------------------------------ + x: |s| e | f | + ------------------------------------------------------ + msb lsb msb lsb ...order + + + ------------------------ ------------------------ + x0: |s| e | f1 | x1: | f2 | + ------------------------ ------------------------ + + By performing shifts and subtracts on x0 and x1 (both regarded + as integers), we obtain an 8-bit approximation of sqrt(x) as + follows. + + k := (x0>>1) + 0x1ff80000; + y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits + Here k is a 32-bit integer and T1[] is an integer array containing + correction terms. Now magically the floating value of y (y's + leading 32-bit word is y0, the value of its trailing word is 0) + approximates sqrt(x) to almost 8-bit. + + Value of T1: + static int T1[32]= { + 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, + 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, + 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, + 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; + + (2) Iterative refinement + + Apply Heron's rule three times to y, we have y approximates + sqrt(x) to within 1 ulp (Unit in the Last Place): + + y := (y+x/y)/2 ... almost 17 sig. bits + y := (y+x/y)/2 ... almost 35 sig. bits + y := y-(y-x/y)/2 ... within 1 ulp + + + Remark 1. + Another way to improve y to within 1 ulp is: + + y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) + y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) + + 2 + (x-y )*y + y := y + 2* ---------- ...within 1 ulp + 2 + 3y + x + + + This formula has one division fewer than the one above; however, + it requires more multiplications and additions. Also x must be + scaled in advance to avoid spurious overflow in evaluating the + expression 3y*y+x. Hence it is not recommended uless division + is slow. If division is very slow, then one should use the + reciproot algorithm given in section B. + + (3) Final adjustment + + By twiddling y's last bit it is possible to force y to be + correctly rounded according to the prevailing rounding mode + as follows. Let r and i be copies of the rounding mode and + inexact flag before entering the square root program. Also we + use the expression y+-ulp for the next representable floating + numbers (up and down) of y. Note that y+-ulp = either fixed + point y+-1, or multiply y by nextafter(1,+-inf) in chopped + mode. + + I := FALSE; ... reset INEXACT flag I + R := RZ; ... set rounding mode to round-toward-zero + z := x/y; ... chopped quotient, possibly inexact + If(not I) then { ... if the quotient is exact + if(z=y) { + I := i; ... restore inexact flag + R := r; ... restore rounded mode + return sqrt(x):=y. + } else { + z := z - ulp; ... special rounding + } + } + i := TRUE; ... sqrt(x) is inexact + If (r=RN) then z=z+ulp ... rounded-to-nearest + If (r=RP) then { ... round-toward-+inf + y = y+ulp; z=z+ulp; + } + y := y+z; ... chopped sum + y0:=y0-0x00100000; ... y := y/2 is correctly rounded. + I := i; ... restore inexact flag + R := r; ... restore rounded mode + return sqrt(x):=y. + + (4) Special cases + + Square root of +inf, +-0, or NaN is itself; + Square root of a negative number is NaN with invalid signal. + + +B. sqrt(x) by Reciproot Iteration + + (1) Initial approximation + + Let x0 and x1 be the leading and the trailing 32-bit words of + a floating point number x (in IEEE double format) respectively + (see section A). By performing shifs and subtracts on x0 and y0, + we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. + + k := 0x5fe80000 - (x0>>1); + y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits + + Here k is a 32-bit integer and T2[] is an integer array + containing correction terms. Now magically the floating + value of y (y's leading 32-bit word is y0, the value of + its trailing word y1 is set to zero) approximates 1/sqrt(x) + to almost 7.8-bit. + + Value of T2: + static int T2[64]= { + 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, + 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, + 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, + 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, + 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, + 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, + 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, + 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; + + (2) Iterative refinement + + Apply Reciproot iteration three times to y and multiply the + result by x to get an approximation z that matches sqrt(x) + to about 1 ulp. To be exact, we will have + -1ulp < sqrt(x)-z<1.0625ulp. + + ... set rounding mode to Round-to-nearest + y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) + y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) + ... special arrangement for better accuracy + z := x*y ... 29 bits to sqrt(x), with z*y<1 + z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) + + Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that + (a) the term z*y in the final iteration is always less than 1; + (b) the error in the final result is biased upward so that + -1 ulp < sqrt(x) - z < 1.0625 ulp + instead of |sqrt(x)-z|<1.03125ulp. + + (3) Final adjustment + + By twiddling y's last bit it is possible to force y to be + correctly rounded according to the prevailing rounding mode + as follows. Let r and i be copies of the rounding mode and + inexact flag before entering the square root program. Also we + use the expression y+-ulp for the next representable floating + numbers (up and down) of y. Note that y+-ulp = either fixed + point y+-1, or multiply y by nextafter(1,+-inf) in chopped + mode. + + R := RZ; ... set rounding mode to round-toward-zero + switch(r) { + case RN: ... round-to-nearest + if(x<= z*(z-ulp)...chopped) z = z - ulp; else + if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; + break; + case RZ:case RM: ... round-to-zero or round-to--inf + R:=RP; ... reset rounding mod to round-to-+inf + if(x<z*z ... rounded up) z = z - ulp; else + if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; + break; + case RP: ... round-to-+inf + if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else + if(x>z*z ...chopped) z = z+ulp; + break; + } + + Remark 3. The above comparisons can be done in fixed point. For + example, to compare x and w=z*z chopped, it suffices to compare + x1 and w1 (the trailing parts of x and w), regarding them as + two's complement integers. + + ...Is z an exact square root? + To determine whether z is an exact square root of x, let z1 be the + trailing part of z, and also let x0 and x1 be the leading and + trailing parts of x. + + If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 + I := 1; ... Raise Inexact flag: z is not exact + else { + j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 + k := z1 >> 26; ... get z's 25-th and 26-th + fraction bits + I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); + } + R:= r ... restore rounded mode + return sqrt(x):=z. + + If multiplication is cheaper then the foregoing red tape, the + Inexact flag can be evaluated by + + I := i; + I := (z*z!=x) or I. + + Note that z*z can overwrite I; this value must be sensed if it is + True. + + Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be + zero. + + -------------------- + z1: | f2 | + -------------------- + bit 31 bit 0 + + Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd + or even of logb(x) have the following relations: + + ------------------------------------------------- + bit 27,26 of z1 bit 1,0 of x1 logb(x) + ------------------------------------------------- + 00 00 odd and even + 01 01 even + 10 10 odd + 10 00 even + 11 01 even + ------------------------------------------------- + + (4) Special cases (see (4) of Section A). + + */ + diff --git a/05/musl-0.6.0/src/math/e_sqrtf.c b/05/musl-0.6.0/src/math/e_sqrtf.c new file mode 100644 index 0000000..03a15be --- /dev/null +++ b/05/musl-0.6.0/src/math/e_sqrtf.c @@ -0,0 +1,85 @@ +/* e_sqrtf.c -- float version of e_sqrt.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one = 1.0, tiny=1.0e-30; + +float +sqrtf(float x) +{ + float z; + int32_t sign = (int)0x80000000; + int32_t ix,s,q,m,t,i; + uint32_t r; + + GET_FLOAT_WORD(ix,x); + + /* take care of Inf and NaN */ + if((ix&0x7f800000)==0x7f800000) { + return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf + sqrt(-inf)=sNaN */ + } + /* take care of zero */ + if(ix<=0) { + if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */ + else if(ix<0) + return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ + } + /* normalize x */ + m = (ix>>23); + if(m==0) { /* subnormal x */ + for(i=0;(ix&0x00800000)==0;i++) ix<<=1; + m -= i-1; + } + m -= 127; /* unbias exponent */ + ix = (ix&0x007fffff)|0x00800000; + if(m&1) /* odd m, double x to make it even */ + ix += ix; + m >>= 1; /* m = [m/2] */ + + /* generate sqrt(x) bit by bit */ + ix += ix; + q = s = 0; /* q = sqrt(x) */ + r = 0x01000000; /* r = moving bit from right to left */ + + while(r!=0) { + t = s+r; + if(t<=ix) { + s = t+r; + ix -= t; + q += r; + } + ix += ix; + r>>=1; + } + + /* use floating add to find out rounding direction */ + if(ix!=0) { + z = one-tiny; /* trigger inexact flag */ + if (z>=one) { + z = one+tiny; + if (z>one) + q += 2; + else + q += (q&1); + } + } + ix = (q>>1)+0x3f000000; + ix += (m <<23); + SET_FLOAT_WORD(z,ix); + return z; +} diff --git a/05/musl-0.6.0/src/math/i386/e_exp.s b/05/musl-0.6.0/src/math/i386/e_exp.s new file mode 100644 index 0000000..d6c54a3 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_exp.s @@ -0,0 +1,36 @@ +.global expf +expf: + mov 4(%esp),%eax + flds 4(%esp) + shr $23,%eax + inc %al + jz 1f + jmp 0f + +.global exp +exp: + mov 8(%esp),%eax + fldl 4(%esp) + shl %eax + cmp $0xffe00000,%eax + jae 1f + +0: fldl2e + fmulp + fst %st(1) + frndint + fst %st(2) + fsubrp + f2xm1 + fld1 + faddp + fscale + fstp %st(1) + ret + +1: fsts 4(%esp) + cmpl $0xff800000,4(%esp) + jnz 1f + fstp %st(0) + fldz +1: ret diff --git a/05/musl-0.6.0/src/math/i386/e_expf.s b/05/musl-0.6.0/src/math/i386/e_expf.s new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_expf.s @@ -0,0 +1 @@ + diff --git a/05/musl-0.6.0/src/math/i386/e_log.s b/05/musl-0.6.0/src/math/i386/e_log.s new file mode 100644 index 0000000..34b8d38 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_log.s @@ -0,0 +1,6 @@ +.global log +log: + fldln2 + fldl 4(%esp) + fyl2x + ret diff --git a/05/musl-0.6.0/src/math/i386/e_log10.s b/05/musl-0.6.0/src/math/i386/e_log10.s new file mode 100644 index 0000000..7f48941 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_log10.s @@ -0,0 +1,6 @@ +.global log10 +log10: + fldlg2 + fldl 4(%esp) + fyl2x + ret diff --git a/05/musl-0.6.0/src/math/i386/e_log10f.s b/05/musl-0.6.0/src/math/i386/e_log10f.s new file mode 100644 index 0000000..311486e --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_log10f.s @@ -0,0 +1,6 @@ +.global log10f +log10f: + fldlg2 + flds 4(%esp) + fyl2x + ret diff --git a/05/musl-0.6.0/src/math/i386/e_logf.s b/05/musl-0.6.0/src/math/i386/e_logf.s new file mode 100644 index 0000000..b8beec0 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_logf.s @@ -0,0 +1,6 @@ +.global logf +logf: + fldln2 + flds 4(%esp) + fyl2x + ret diff --git a/05/musl-0.6.0/src/math/i386/e_remainder.s b/05/musl-0.6.0/src/math/i386/e_remainder.s new file mode 100644 index 0000000..b7ff3ef --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_remainder.s @@ -0,0 +1,16 @@ +.global remainderf +remainderf: + flds 8(%esp) + flds 4(%esp) + jmp 1f + +.global remainder +remainder: + fldl 12(%esp) + fldl 4(%esp) +1: fprem1 + fstsw %ax + sahf + jp 1b + fstp %st(1) + ret diff --git a/05/musl-0.6.0/src/math/i386/e_remainderf.s b/05/musl-0.6.0/src/math/i386/e_remainderf.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_remainderf.s diff --git a/05/musl-0.6.0/src/math/i386/e_sqrt.s b/05/musl-0.6.0/src/math/i386/e_sqrt.s new file mode 100644 index 0000000..11314dc --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_sqrt.s @@ -0,0 +1,4 @@ +.global sqrt +sqrt: fldl 4(%esp) + fsqrt + ret diff --git a/05/musl-0.6.0/src/math/i386/e_sqrtf.s b/05/musl-0.6.0/src/math/i386/e_sqrtf.s new file mode 100644 index 0000000..015e24c --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/e_sqrtf.s @@ -0,0 +1,4 @@ +.global sqrtf +sqrtf: flds 4(%esp) + fsqrt + ret diff --git a/05/musl-0.6.0/src/math/i386/s_ceil.s b/05/musl-0.6.0/src/math/i386/s_ceil.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_ceil.s diff --git a/05/musl-0.6.0/src/math/i386/s_ceilf.s b/05/musl-0.6.0/src/math/i386/s_ceilf.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_ceilf.s diff --git a/05/musl-0.6.0/src/math/i386/s_fabs.s b/05/musl-0.6.0/src/math/i386/s_fabs.s new file mode 100644 index 0000000..10c70f3 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_fabs.s @@ -0,0 +1,5 @@ +.global fabs +fabs: + fldl 4(%esp) + fabs + ret diff --git a/05/musl-0.6.0/src/math/i386/s_fabsf.s b/05/musl-0.6.0/src/math/i386/s_fabsf.s new file mode 100644 index 0000000..4544269 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_fabsf.s @@ -0,0 +1,5 @@ +.global fabsf +fabsf: + flds 4(%esp) + fabs + ret diff --git a/05/musl-0.6.0/src/math/i386/s_floor.s b/05/musl-0.6.0/src/math/i386/s_floor.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_floor.s diff --git a/05/musl-0.6.0/src/math/i386/s_floorf.s b/05/musl-0.6.0/src/math/i386/s_floorf.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_floorf.s diff --git a/05/musl-0.6.0/src/math/i386/s_ldexp.s b/05/musl-0.6.0/src/math/i386/s_ldexp.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_ldexp.s diff --git a/05/musl-0.6.0/src/math/i386/s_ldexpf.s b/05/musl-0.6.0/src/math/i386/s_ldexpf.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_ldexpf.s diff --git a/05/musl-0.6.0/src/math/i386/s_rint.s b/05/musl-0.6.0/src/math/i386/s_rint.s new file mode 100644 index 0000000..5ba4ab4 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_rint.s @@ -0,0 +1,5 @@ +.global rint +rint: + fldl 4(%esp) + frndint + ret diff --git a/05/musl-0.6.0/src/math/i386/s_rintf.s b/05/musl-0.6.0/src/math/i386/s_rintf.s new file mode 100644 index 0000000..d7aacd8 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_rintf.s @@ -0,0 +1,5 @@ +.global rintf +rintf: + flds 4(%esp) + frndint + ret diff --git a/05/musl-0.6.0/src/math/i386/s_scalbln.s b/05/musl-0.6.0/src/math/i386/s_scalbln.s new file mode 100644 index 0000000..bd022b4 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_scalbln.s @@ -0,0 +1,11 @@ +.global ldexp +.global scalbn +.global scalbln +ldexp: +scalbn: +scalbln: + fildl 12(%esp) + fldl 4(%esp) + fscale + fstp %st(1) + ret diff --git a/05/musl-0.6.0/src/math/i386/s_scalblnf.s b/05/musl-0.6.0/src/math/i386/s_scalblnf.s new file mode 100644 index 0000000..379ec91 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_scalblnf.s @@ -0,0 +1,11 @@ +.global ldexpf +.global scalbnf +.global scalblnf +ldexpf: +scalbnf: +scalblnf: + fildl 8(%esp) + flds 4(%esp) + fscale + fstp %st(1) + ret diff --git a/05/musl-0.6.0/src/math/i386/s_trunc.s b/05/musl-0.6.0/src/math/i386/s_trunc.s new file mode 100644 index 0000000..0773891 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_trunc.s @@ -0,0 +1,36 @@ +.global ceilf +ceilf: flds 4(%esp) + jmp 1f + +.global ceil +ceil: fldl 4(%esp) +1: mov $0x08fb,%edx + jmp 0f + +.global floorf +floorf: flds 4(%esp) + jmp 1f + +.global floor +floor: fldl 4(%esp) +1: mov $0x04f7,%edx + jmp 0f + +.global truncf +truncf: flds 4(%esp) + jmp 1f + +.global trunc +trunc: fldl 4(%esp) +1: mov $0x0cff,%edx + +0: fstcw 4(%esp) + mov 5(%esp),%ah + or %dh,%ah + and %dl,%ah + xchg %ah,5(%esp) + fldcw 4(%esp) + frndint + mov %ah,5(%esp) + fldcw 4(%esp) + ret diff --git a/05/musl-0.6.0/src/math/i386/s_truncf.s b/05/musl-0.6.0/src/math/i386/s_truncf.s new file mode 100644 index 0000000..e69de29 --- /dev/null +++ b/05/musl-0.6.0/src/math/i386/s_truncf.s diff --git a/05/musl-0.6.0/src/math/k_cos.c b/05/musl-0.6.0/src/math/k_cos.c new file mode 100644 index 0000000..22e9841 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_cos.c @@ -0,0 +1,85 @@ + +/* @(#)k_cos.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __kernel_cos( x, y ) + * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * + * Algorithm + * 1. Since cos(-x) = cos(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. + * 3. cos(x) is approximated by a polynomial of degree 14 on + * [0,pi/4] + * 4 14 + * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x + * where the remez error is + * + * | 2 4 6 8 10 12 14 | -58 + * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 + * | | + * + * 4 6 8 10 12 14 + * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then + * cos(x) = 1 - x*x/2 + r + * since cos(x+y) ~ cos(x) - sin(x)*y + * ~ cos(x) - x*y, + * a correction term is necessary in cos(x) and hence + * cos(x+y) = 1 - (x*x/2 - (r - x*y)) + * For better accuracy when x > 0.3, let qx = |x|/4 with + * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. + * Then + * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). + * Note that 1-qx and (x*x/2-qx) is EXACT here, and the + * magnitude of the latter is at least a quarter of x*x/2, + * thus, reducing the rounding error in the subtraction. + */ + +#include <math.h> +#include "math_private.h" + +static const double +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ +C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ +C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ +C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ +C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ +C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ + +double +__kernel_cos(double x, double y) +{ + double a,hz,z,r,qx; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* ix = |x|'s high word*/ + if(ix<0x3e400000) { /* if x < 2**27 */ + if(((int)x)==0) return one; /* generate inexact */ + } + z = x*x; + r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); + if(ix < 0x3FD33333) /* if |x| < 0.3 */ + return one - (0.5*z - (z*r - x*y)); + else { + if(ix > 0x3fe90000) { /* x > 0.78125 */ + qx = 0.28125; + } else { + INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ + } + hz = 0.5*z-qx; + a = one-qx; + return a - (hz - (z*r-x*y)); + } +} diff --git a/05/musl-0.6.0/src/math/k_cosf.c b/05/musl-0.6.0/src/math/k_cosf.c new file mode 100644 index 0000000..61dc374 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_cosf.c @@ -0,0 +1,52 @@ +/* k_cosf.c -- float version of k_cos.c + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0000000000e+00, /* 0x3f800000 */ +C1 = 4.1666667908e-02, /* 0x3d2aaaab */ +C2 = -1.3888889225e-03, /* 0xbab60b61 */ +C3 = 2.4801587642e-05, /* 0x37d00d01 */ +C4 = -2.7557314297e-07, /* 0xb493f27c */ +C5 = 2.0875723372e-09, /* 0x310f74f6 */ +C6 = -1.1359647598e-11; /* 0xad47d74e */ + +float +__kernel_cosf(float x, float y) +{ + float a,hz,z,r,qx; + int32_t ix; + GET_FLOAT_WORD(ix,x); + ix &= 0x7fffffff; /* ix = |x|'s high word*/ + if(ix<0x32000000) { /* if x < 2**27 */ + if(((int)x)==0) return one; /* generate inexact */ + } + z = x*x; + r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); + if(ix < 0x3e99999a) /* if |x| < 0.3 */ + return one - ((float)0.5*z - (z*r - x*y)); + else { + if(ix > 0x3f480000) { /* x > 0.78125 */ + qx = (float)0.28125; + } else { + SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */ + } + hz = (float)0.5*z-qx; + a = one-qx; + return a - (hz - (z*r-x*y)); + } +} diff --git a/05/musl-0.6.0/src/math/k_rem_pio2.c b/05/musl-0.6.0/src/math/k_rem_pio2.c new file mode 100644 index 0000000..d993e4f --- /dev/null +++ b/05/musl-0.6.0/src/math/k_rem_pio2.c @@ -0,0 +1,300 @@ + +/* @(#)k_rem_pio2.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + * double x[],y[]; int e0,nx,prec; int ipio2[]; + * + * __kernel_rem_pio2 return the last three digits of N with + * y = x - N*pi/2 + * so that |y| < pi/2. + * + * The method is to compute the integer (mod 8) and fraction parts of + * (2/pi)*x without doing the full multiplication. In general we + * skip the part of the product that are known to be a huge integer ( + * more accurately, = 0 mod 8 ). Thus the number of operations are + * independent of the exponent of the input. + * + * (2/pi) is represented by an array of 24-bit integers in ipio2[]. + * + * Input parameters: + * x[] The input value (must be positive) is broken into nx + * pieces of 24-bit integers in double precision format. + * x[i] will be the i-th 24 bit of x. The scaled exponent + * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 + * match x's up to 24 bits. + * + * Example of breaking a double positive z into x[0]+x[1]+x[2]: + * e0 = ilogb(z)-23 + * z = scalbn(z,-e0) + * for i = 0,1,2 + * x[i] = floor(z) + * z = (z-x[i])*2**24 + * + * + * y[] ouput result in an array of double precision numbers. + * The dimension of y[] is: + * 24-bit precision 1 + * 53-bit precision 2 + * 64-bit precision 2 + * 113-bit precision 3 + * The actual value is the sum of them. Thus for 113-bit + * precison, one may have to do something like: + * + * long double t,w,r_head, r_tail; + * t = (long double)y[2] + (long double)y[1]; + * w = (long double)y[0]; + * r_head = t+w; + * r_tail = w - (r_head - t); + * + * e0 The exponent of x[0] + * + * nx dimension of x[] + * + * prec an integer indicating the precision: + * 0 24 bits (single) + * 1 53 bits (double) + * 2 64 bits (extended) + * 3 113 bits (quad) + * + * ipio2[] + * integer array, contains the (24*i)-th to (24*i+23)-th + * bit of 2/pi after binary point. The corresponding + * floating value is + * + * ipio2[i] * 2^(-24(i+1)). + * + * External function: + * double scalbn(), floor(); + * + * + * Here is the description of some local variables: + * + * jk jk+1 is the initial number of terms of ipio2[] needed + * in the computation. The recommended value is 2,3,4, + * 6 for single, double, extended,and quad. + * + * jz local integer variable indicating the number of + * terms of ipio2[] used. + * + * jx nx - 1 + * + * jv index for pointing to the suitable ipio2[] for the + * computation. In general, we want + * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 + * is an integer. Thus + * e0-3-24*jv >= 0 or (e0-3)/24 >= jv + * Hence jv = max(0,(e0-3)/24). + * + * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. + * + * q[] double array with integral value, representing the + * 24-bits chunk of the product of x and 2/pi. + * + * q0 the corresponding exponent of q[0]. Note that the + * exponent for q[i] would be q0-24*i. + * + * PIo2[] double precision array, obtained by cutting pi/2 + * into 24 bits chunks. + * + * f[] ipio2[] in floating point + * + * iq[] integer array by breaking up q[] in 24-bits chunk. + * + * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] + * + * ih integer. If >0 it indicates q[] is >= 0.5, hence + * it also indicates the *sign* of the result. + * + */ + + +/* + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ + +static const double PIo2[] = { + 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ + 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ + 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ + 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ + 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ + 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ + 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ + 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ +}; + +static const double +zero = 0.0, +one = 1.0, +two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ +twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ + + int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) +{ + int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; + double z,fw,f[20],fq[20],q[20]; + + /* initialize jk*/ + jk = init_jk[prec]; + jp = jk; + + /* determine jx,jv,q0, note that 3>q0 */ + jx = nx-1; + jv = (e0-3)/24; if(jv<0) jv=0; + q0 = e0-24*(jv+1); + + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ + j = jv-jx; m = jx+jk; + for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; + + /* compute q[0],q[1],...q[jk] */ + for (i=0;i<=jk;i++) { + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; + } + + jz = jk; +recompute: + /* distill q[] into iq[] reversingly */ + for(i=0,j=jz,z=q[jz];j>0;i++,j--) { + fw = (double)((int32_t)(twon24* z)); + iq[i] = (int32_t)(z-two24*fw); + z = q[j-1]+fw; + } + + /* compute n */ + z = scalbn(z,q0); /* actual value of z */ + z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ + n = (int32_t) z; + z -= (double)n; + ih = 0; + if(q0>0) { /* need iq[jz-1] to determine n */ + i = (iq[jz-1]>>(24-q0)); n += i; + iq[jz-1] -= i<<(24-q0); + ih = iq[jz-1]>>(23-q0); + } + else if(q0==0) ih = iq[jz-1]>>23; + else if(z>=0.5) ih=2; + + if(ih>0) { /* q > 0.5 */ + n += 1; carry = 0; + for(i=0;i<jz ;i++) { /* compute 1-q */ + j = iq[i]; + if(carry==0) { + if(j!=0) { + carry = 1; iq[i] = 0x1000000- j; + } + } else iq[i] = 0xffffff - j; + } + if(q0>0) { /* rare case: chance is 1 in 12 */ + switch(q0) { + case 1: + iq[jz-1] &= 0x7fffff; break; + case 2: + iq[jz-1] &= 0x3fffff; break; + } + } + if(ih==2) { + z = one - z; + if(carry!=0) z -= scalbn(one,q0); + } + } + + /* check if recomputation is needed */ + if(z==zero) { + j = 0; + for (i=jz-1;i>=jk;i--) j |= iq[i]; + if(j==0) { /* need recomputation */ + for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ + + for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ + f[jx+i] = (double) ipio2[jv+i]; + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; + q[i] = fw; + } + jz += k; + goto recompute; + } + } + + /* chop off zero terms */ + if(z==0.0) { + jz -= 1; q0 -= 24; + while(iq[jz]==0) { jz--; q0-=24;} + } else { /* break z into 24-bit if necessary */ + z = scalbn(z,-q0); + if(z>=two24) { + fw = (double)((int32_t)(twon24*z)); + iq[jz] = (int32_t)(z-two24*fw); + jz += 1; q0 += 24; + iq[jz] = (int32_t) fw; + } else iq[jz] = (int32_t) z ; + } + + /* convert integer "bit" chunk to floating-point value */ + fw = scalbn(one,q0); + for(i=jz;i>=0;i--) { + q[i] = fw*(double)iq[i]; fw*=twon24; + } + + /* compute PIo2[0,...,jp]*q[jz,...,0] */ + for(i=jz;i>=0;i--) { + for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; + fq[jz-i] = fw; + } + + /* compress fq[] into y[] */ + switch(prec) { + case 0: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + break; + case 1: + case 2: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + fw = fq[0]-fw; + for (i=1;i<=jz;i++) fw += fq[i]; + y[1] = (ih==0)? fw: -fw; + break; + case 3: /* painful */ + for (i=jz;i>0;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (i=jz;i>1;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; + if(ih==0) { + y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; + } else { + y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; + } + } + return n&7; +} diff --git a/05/musl-0.6.0/src/math/k_rem_pio2f.c b/05/musl-0.6.0/src/math/k_rem_pio2f.c new file mode 100644 index 0000000..b543f08 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_rem_pio2f.c @@ -0,0 +1,192 @@ +/* k_rem_pio2f.c -- float version of k_rem_pio2.c + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +/* In the float version, the input parameter x contains 8 bit + integers, not 24 bit integers. 113 bit precision is not supported. */ + +static const int init_jk[] = {4,7,9}; /* initial value for jk */ + +static const float PIo2[] = { + 1.5703125000e+00, /* 0x3fc90000 */ + 4.5776367188e-04, /* 0x39f00000 */ + 2.5987625122e-05, /* 0x37da0000 */ + 7.5437128544e-08, /* 0x33a20000 */ + 6.0026650317e-11, /* 0x2e840000 */ + 7.3896444519e-13, /* 0x2b500000 */ + 5.3845816694e-15, /* 0x27c20000 */ + 5.6378512969e-18, /* 0x22d00000 */ + 8.3009228831e-20, /* 0x1fc40000 */ + 3.2756352257e-22, /* 0x1bc60000 */ + 6.3331015649e-25, /* 0x17440000 */ +}; + +static const float +zero = 0.0, +one = 1.0, +two8 = 2.5600000000e+02, /* 0x43800000 */ +twon8 = 3.9062500000e-03; /* 0x3b800000 */ + + int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const int32_t *ipio2) +{ + int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; + float z,fw,f[20],fq[20],q[20]; + + /* initialize jk*/ + jk = init_jk[prec]; + jp = jk; + + /* determine jx,jv,q0, note that 3>q0 */ + jx = nx-1; + jv = (e0-3)/8; if(jv<0) jv=0; + q0 = e0-8*(jv+1); + + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ + j = jv-jx; m = jx+jk; + for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j]; + + /* compute q[0],q[1],...q[jk] */ + for (i=0;i<=jk;i++) { + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; + } + + jz = jk; +recompute: + /* distill q[] into iq[] reversingly */ + for(i=0,j=jz,z=q[jz];j>0;i++,j--) { + fw = (float)((int32_t)(twon8* z)); + iq[i] = (int32_t)(z-two8*fw); + z = q[j-1]+fw; + } + + /* compute n */ + z = scalbnf(z,q0); /* actual value of z */ + z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */ + n = (int32_t) z; + z -= (float)n; + ih = 0; + if(q0>0) { /* need iq[jz-1] to determine n */ + i = (iq[jz-1]>>(8-q0)); n += i; + iq[jz-1] -= i<<(8-q0); + ih = iq[jz-1]>>(7-q0); + } + else if(q0==0) ih = iq[jz-1]>>7; + else if(z>=(float)0.5) ih=2; + + if(ih>0) { /* q > 0.5 */ + n += 1; carry = 0; + for(i=0;i<jz ;i++) { /* compute 1-q */ + j = iq[i]; + if(carry==0) { + if(j!=0) { + carry = 1; iq[i] = 0x100- j; + } + } else iq[i] = 0xff - j; + } + if(q0>0) { /* rare case: chance is 1 in 12 */ + switch(q0) { + case 1: + iq[jz-1] &= 0x7f; break; + case 2: + iq[jz-1] &= 0x3f; break; + } + } + if(ih==2) { + z = one - z; + if(carry!=0) z -= scalbnf(one,q0); + } + } + + /* check if recomputation is needed */ + if(z==zero) { + j = 0; + for (i=jz-1;i>=jk;i--) j |= iq[i]; + if(j==0) { /* need recomputation */ + for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ + + for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ + f[jx+i] = (float) ipio2[jv+i]; + for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; + q[i] = fw; + } + jz += k; + goto recompute; + } + } + + /* chop off zero terms */ + if(z==(float)0.0) { + jz -= 1; q0 -= 8; + while(iq[jz]==0) { jz--; q0-=8;} + } else { /* break z into 8-bit if necessary */ + z = scalbnf(z,-q0); + if(z>=two8) { + fw = (float)((int32_t)(twon8*z)); + iq[jz] = (int32_t)(z-two8*fw); + jz += 1; q0 += 8; + iq[jz] = (int32_t) fw; + } else iq[jz] = (int32_t) z ; + } + + /* convert integer "bit" chunk to floating-point value */ + fw = scalbnf(one,q0); + for(i=jz;i>=0;i--) { + q[i] = fw*(float)iq[i]; fw*=twon8; + } + + /* compute PIo2[0,...,jp]*q[jz,...,0] */ + for(i=jz;i>=0;i--) { + for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; + fq[jz-i] = fw; + } + + /* compress fq[] into y[] */ + switch(prec) { + case 0: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + break; + case 1: + case 2: + fw = 0.0; + for (i=jz;i>=0;i--) fw += fq[i]; + y[0] = (ih==0)? fw: -fw; + fw = fq[0]-fw; + for (i=1;i<=jz;i++) fw += fq[i]; + y[1] = (ih==0)? fw: -fw; + break; + case 3: /* painful */ + for (i=jz;i>0;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (i=jz;i>1;i--) { + fw = fq[i-1]+fq[i]; + fq[i] += fq[i-1]-fw; + fq[i-1] = fw; + } + for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; + if(ih==0) { + y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; + } else { + y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; + } + } + return n&7; +} diff --git a/05/musl-0.6.0/src/math/k_sin.c b/05/musl-0.6.0/src/math/k_sin.c new file mode 100644 index 0000000..9def258 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_sin.c @@ -0,0 +1,68 @@ + +/* @(#)k_sin.c 1.3 95/01/18 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __kernel_sin( x, y, iy) + * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). + * + * Algorithm + * 1. Since sin(-x) = -sin(x), we need only to consider positive x. + * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. + * 3. sin(x) is approximated by a polynomial of degree 13 on + * [0,pi/4] + * 3 13 + * sin(x) ~ x + S1*x + ... + S6*x + * where + * + * |sin(x) 2 4 6 8 10 12 | -58 + * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 + * | x | + * + * 4. sin(x+y) = sin(x) + sin'(x')*y + * ~ sin(x) + (1-x*x/2)*y + * For better accuracy, let + * 3 2 2 2 2 + * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) + * then 3 2 + * sin(x) = x + (S1*x + (x *(r-y/2)+y)) + */ + +#include <math.h> +#include "math_private.h" + +static const double +half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ +S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ +S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ +S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ +S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ +S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ + +double +__kernel_sin(double x, double y, int iy) +{ + double z,r,v; + int32_t ix; + GET_HIGH_WORD(ix,x); + ix &= 0x7fffffff; /* high word of x */ + if(ix<0x3e400000) /* |x| < 2**-27 */ + {if((int)x==0) return x;} /* generate inexact */ + z = x*x; + v = z*x; + r = S2+z*(S3+z*(S4+z*(S5+z*S6))); + if(iy==0) return x+v*(S1+z*r); + else return x-((z*(half*y-v*r)-y)-v*S1); +} diff --git a/05/musl-0.6.0/src/math/k_sinf.c b/05/musl-0.6.0/src/math/k_sinf.c new file mode 100644 index 0000000..617f614 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_sinf.c @@ -0,0 +1,42 @@ +/* k_sinf.c -- float version of k_sin.c + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +half = 5.0000000000e-01,/* 0x3f000000 */ +S1 = -1.6666667163e-01, /* 0xbe2aaaab */ +S2 = 8.3333337680e-03, /* 0x3c088889 */ +S3 = -1.9841270114e-04, /* 0xb9500d01 */ +S4 = 2.7557314297e-06, /* 0x3638ef1b */ +S5 = -2.5050759689e-08, /* 0xb2d72f34 */ +S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */ + +float +__kernel_sinf(float x, float y, int iy) +{ + float z,r,v; + int32_t ix; + GET_FLOAT_WORD(ix,x); + ix &= 0x7fffffff; /* high word of x */ + if(ix<0x32000000) /* |x| < 2**-27 */ + {if((int)x==0) return x;} /* generate inexact */ + z = x*x; + v = z*x; + r = S2+z*(S3+z*(S4+z*(S5+z*S6))); + if(iy==0) return x+v*(S1+z*r); + else return x-((z*(half*y-v*r)-y)-v*S1); +} diff --git a/05/musl-0.6.0/src/math/k_tan.c b/05/musl-0.6.0/src/math/k_tan.c new file mode 100644 index 0000000..f721ae6 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_tan.c @@ -0,0 +1,149 @@ +/* @(#)k_tan.c 1.5 04/04/22 SMI */ + +/* + * ==================================================== + * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __kernel_tan( x, y, k ) + * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned. + * + * Algorithm + * 1. Since tan(-x) = -tan(x), we need only to consider positive x. + * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. + * 3. tan(x) is approximated by a odd polynomial of degree 27 on + * [0,0.67434] + * 3 27 + * tan(x) ~ x + T1*x + ... + T13*x + * where + * + * |tan(x) 2 4 26 | -59.2 + * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 + * | x | + * + * Note: tan(x+y) = tan(x) + tan'(x)*y + * ~ tan(x) + (1+x*x)*y + * Therefore, for better accuracy in computing tan(x+y), let + * 3 2 2 2 2 + * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) + * then + * 3 2 + * tan(x+y) = x + (T1*x + (x *(r+y)+y)) + * + * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then + * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) + * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) + */ + +#include <math.h> +#include "math_private.h" +static const double xxx[] = { + 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ + 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ + 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ + 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ + 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ + 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ + 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ + 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ + 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ + 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ + 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ + -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ + 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ +/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ +/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ +/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ +}; +#define one xxx[13] +#define pio4 xxx[14] +#define pio4lo xxx[15] +#define T xxx +/* INDENT ON */ + +double +__kernel_tan(double x, double y, int iy) { + double z, r, v, w, s; + int32_t ix, hx; + + GET_HIGH_WORD(hx,x); + ix = hx & 0x7fffffff; /* high word of |x| */ + if (ix < 0x3e300000) { /* x < 2**-28 */ + if ((int) x == 0) { /* generate inexact */ + uint32_t low; + GET_LOW_WORD(low,x); + if (((ix | low) | (iy + 1)) == 0) + return one / fabs(x); + else { + if (iy == 1) + return x; + else { /* compute -1 / (x+y) carefully */ + double a, t; + + z = w = x + y; + SET_LOW_WORD(z, 0); + v = y - (z - x); + t = a = -one / w; + SET_LOW_WORD(t, 0); + s = one + t * z; + return t + a * (s + t * v); + } + } + } + } + if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ + if (hx < 0) { + x = -x; + y = -y; + } + z = pio4 - x; + w = pio4lo - y; + x = z + w; + y = 0.0; + } + z = x * x; + w = z * z; + /* + * Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + + w * T[11])))); + v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + + w * T[12]))))); + s = z * x; + r = y + z * (s * (r + v) + y); + r += T[0] * s; + w = x + r; + if (ix >= 0x3FE59428) { + v = (double) iy; + return (double) (1 - ((hx >> 30) & 2)) * + (v - 2.0 * (x - (w * w / (w + v) - r))); + } + if (iy == 1) + return w; + else { + /* + * if allow error up to 2 ulp, simply return + * -1.0 / (x+r) here + */ + /* compute -1.0 / (x+r) accurately */ + double a, t; + z = w; + SET_LOW_WORD(z,0); + v = r - (z - x); /* z+v = r+x */ + t = a = -1.0 / w; /* a = -1.0/w */ + SET_LOW_WORD(t,0); + s = 1.0 + t * z; + return t + a * (s + t * v); + } +} diff --git a/05/musl-0.6.0/src/math/k_tanf.c b/05/musl-0.6.0/src/math/k_tanf.c new file mode 100644 index 0000000..99ede58 --- /dev/null +++ b/05/musl-0.6.0/src/math/k_tanf.c @@ -0,0 +1,105 @@ +/* k_tanf.c -- float version of k_tan.c + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. + * + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" +static const float +one = 1.0000000000e+00, /* 0x3f800000 */ +pio4 = 7.8539812565e-01, /* 0x3f490fda */ +pio4lo= 3.7748947079e-08, /* 0x33222168 */ +T[] = { + 3.3333334327e-01, /* 0x3eaaaaab */ + 1.3333334029e-01, /* 0x3e088889 */ + 5.3968254477e-02, /* 0x3d5d0dd1 */ + 2.1869488060e-02, /* 0x3cb327a4 */ + 8.8632395491e-03, /* 0x3c11371f */ + 3.5920790397e-03, /* 0x3b6b6916 */ + 1.4562094584e-03, /* 0x3abede48 */ + 5.8804126456e-04, /* 0x3a1a26c8 */ + 2.4646313977e-04, /* 0x398137b9 */ + 7.8179444245e-05, /* 0x38a3f445 */ + 7.1407252108e-05, /* 0x3895c07a */ + -1.8558637748e-05, /* 0xb79bae5f */ + 2.5907305826e-05, /* 0x37d95384 */ +}; + +float +__kernel_tanf(float x, float y, int iy) +{ + float z,r,v,w,s; + int32_t ix,hx; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; /* high word of |x| */ + if(ix<0x31800000) { /* x < 2**-28 */ + if ((int) x == 0) { /* generate inexact */ + if ((ix | (iy + 1)) == 0) + return one / fabsf(x); + else { + if (iy == 1) + return x; + else { /* compute -1 / (x+y) carefully */ + double a, t; + + z = w = x + y; + GET_FLOAT_WORD(ix, z); + SET_FLOAT_WORD(z, ix & 0xfffff000); + v = y - (z - x); + t = a = -one / w; + GET_FLOAT_WORD(ix, t); + SET_FLOAT_WORD(t, ix & 0xfffff000); + s = one + t * z; + return t + a * (s + t * v); + } + } + } + } + if(ix>=0x3f2ca140) { /* |x|>=0.6744 */ + if(hx<0) {x = -x; y = -y;} + z = pio4-x; + w = pio4lo-y; + x = z+w; y = 0.0; + } + z = x*x; + w = z*z; + /* Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); + v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); + s = z*x; + r = y + z*(s*(r+v)+y); + r += T[0]*s; + w = x+r; + if(ix>=0x3f2ca140) { + v = (float)iy; + return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r))); + } + if(iy==1) return w; + else { /* if allow error up to 2 ulp, + simply return -1.0/(x+r) here */ + /* compute -1.0/(x+r) accurately */ + float a,t; + int32_t i; + z = w; + GET_FLOAT_WORD(i,z); + SET_FLOAT_WORD(z,i&0xfffff000); + v = r-(z - x); /* z+v = r+x */ + t = a = -(float)1.0/w; /* a = -1.0/w */ + GET_FLOAT_WORD(i,t); + SET_FLOAT_WORD(t,i&0xfffff000); + s = (float)1.0+t*z; + return t+a*(s+t*v); + } +} diff --git a/05/musl-0.6.0/src/math/math_private.h b/05/musl-0.6.0/src/math/math_private.h new file mode 100644 index 0000000..28a6a19 --- /dev/null +++ b/05/musl-0.6.0/src/math/math_private.h @@ -0,0 +1,143 @@ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#ifndef _MATH_PRIVATE_H_ +#define _MATH_PRIVATE_H_ + +#include <inttypes.h> + +/* + * The original fdlibm code used statements like: + * n0 = ((*(int*)&one)>>29)^1; * index of high word * + * ix0 = *(n0+(int*)&x); * high word of x * + * ix1 = *((1-n0)+(int*)&x); * low word of x * + * to dig two 32 bit words out of the 64 bit IEEE floating point + * value. That is non-ANSI, and, moreover, the gcc instruction + * scheduler gets it wrong. We instead use the following macros. + * Unlike the original code, we determine the endianness at compile + * time, not at run time; I don't see much benefit to selecting + * endianness at run time. + */ + +/* + * A union which permits us to convert between a double and two 32 bit + * ints. + */ + +typedef union +{ + double value; + uint64_t words; +} ieee_double_shape_type; + +/* Get two 32 bit ints from a double. */ + +#define EXTRACT_WORDS(ix0,ix1,d) \ +do { \ + ieee_double_shape_type ew_u; \ + ew_u.value = (d); \ + (ix0) = ew_u.words >> 32; \ + (ix1) = (uint32_t)ew_u.words; \ +} while (0) + +/* Get the more significant 32 bit int from a double. */ + +#define GET_HIGH_WORD(i,d) \ +do { \ + ieee_double_shape_type gh_u; \ + gh_u.value = (d); \ + (i) = gh_u.words >> 32; \ +} while (0) + +/* Get the less significant 32 bit int from a double. */ + +#define GET_LOW_WORD(i,d) \ +do { \ + ieee_double_shape_type gl_u; \ + gl_u.value = (d); \ + (i) = (uint32_t)gl_u.words; \ +} while (0) + +/* Set a double from two 32 bit ints. */ + +#define INSERT_WORDS(d,ix0,ix1) \ +do { \ + ieee_double_shape_type iw_u; \ + iw_u.words = ((uint64_t)(ix0) << 32) | (ix1); \ + (d) = iw_u.value; \ +} while (0) + +/* Set the more significant 32 bits of a double from an int. */ + +#define SET_HIGH_WORD(d,v) \ +do { \ + ieee_double_shape_type sh_u; \ + sh_u.value = (d); \ + sh_u.words &= 0xffffffff; \ + sh_u.words |= ((uint64_t)(v) << 32); \ + (d) = sh_u.value; \ +} while (0) + +/* Set the less significant 32 bits of a double from an int. */ + +#define SET_LOW_WORD(d,v) \ +do { \ + ieee_double_shape_type sl_u; \ + sl_u.value = (d); \ + sl_u.words &= 0xffffffff00000000ull; \ + sl_u.words |= (uint32_t)(v); \ + (d) = sl_u.value; \ +} while (0) + +/* + * A union which permits us to convert between a float and a 32 bit + * int. + */ + +typedef union +{ + float value; + uint32_t word; +} ieee_float_shape_type; + +/* Get a 32 bit int from a float. */ + +#define GET_FLOAT_WORD(i,d) \ +do { \ + ieee_float_shape_type gf_u; \ + gf_u.value = (d); \ + (i) = gf_u.word; \ +} while (0) + +/* Set a float from a 32 bit int. */ + +#define SET_FLOAT_WORD(d,i) \ +do { \ + ieee_float_shape_type sf_u; \ + sf_u.word = (i); \ + (d) = sf_u.value; \ +} while (0) + +/* fdlibm kernel function */ +int __ieee754_rem_pio2(double,double*); +double __kernel_sin(double,double,int); +double __kernel_cos(double,double); +double __kernel_tan(double,double,int); +int __kernel_rem_pio2(double*,double*,int,int,int,const int*); + +/* float versions of fdlibm kernel functions */ +int __ieee754_rem_pio2f(float,float*); +float __kernel_sinf(float,float,int); +float __kernel_cosf(float,float); +float __kernel_tanf(float,float,int); +int __kernel_rem_pio2f(float*,float*,int,int,int,const int*); + +#endif /* !_MATH_PRIVATE_H_ */ diff --git a/05/musl-0.6.0/src/math/s_asinh.c b/05/musl-0.6.0/src/math/s_asinh.c new file mode 100644 index 0000000..2601609 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_asinh.c @@ -0,0 +1,53 @@ +/* @(#)s_asinh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* asinh(x) + * Method : + * Based on + * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] + * we have + * asinh(x) := x if 1+x*x=1, + * := sign(x)*(log(x)+ln2)) for large |x|, else + * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else + * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) + */ + +#include <math.h> +#include "math_private.h" + +static const double +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ +huge= 1.00000000000000000000e+300; + +double +asinh(double x) +{ + double t,w; + int32_t hx,ix; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */ + if(ix< 0x3e300000) { /* |x|<2**-28 */ + if(huge+x>one) return x; /* return x inexact except 0 */ + } + if(ix>0x41b00000) { /* |x| > 2**28 */ + w = log(fabs(x))+ln2; + } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ + t = fabs(x); + w = log(2.0*t+one/(sqrt(x*x+one)+t)); + } else { /* 2.0 > |x| > 2**-28 */ + t = x*x; + w =log1p(fabs(x)+t/(one+sqrt(one+t))); + } + if(hx>0) return w; else return -w; +} diff --git a/05/musl-0.6.0/src/math/s_asinhf.c b/05/musl-0.6.0/src/math/s_asinhf.c new file mode 100644 index 0000000..04f8d07 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_asinhf.c @@ -0,0 +1,45 @@ +/* s_asinhf.c -- float version of s_asinh.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0000000000e+00, /* 0x3F800000 */ +ln2 = 6.9314718246e-01, /* 0x3f317218 */ +huge= 1.0000000000e+30; + +float +asinhf(float x) +{ + float t,w; + int32_t hx,ix; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7f800000) return x+x; /* x is inf or NaN */ + if(ix< 0x31800000) { /* |x|<2**-28 */ + if(huge+x>one) return x; /* return x inexact except 0 */ + } + if(ix>0x4d800000) { /* |x| > 2**28 */ + w = logf(fabsf(x))+ln2; + } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ + t = fabsf(x); + w = logf((float)2.0*t+one/(sqrtf(x*x+one)+t)); + } else { /* 2.0 > |x| > 2**-28 */ + t = x*x; + w =log1pf(fabsf(x)+t/(one+sqrtf(one+t))); + } + if(hx>0) return w; else return -w; +} diff --git a/05/musl-0.6.0/src/math/s_atan.c b/05/musl-0.6.0/src/math/s_atan.c new file mode 100644 index 0000000..1faac02 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_atan.c @@ -0,0 +1,115 @@ +/* @(#)s_atan.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* atan(x) + * Method + * 1. Reduce x to positive by atan(x) = -atan(-x). + * 2. According to the integer k=4t+0.25 chopped, t=x, the argument + * is further reduced to one of the following intervals and the + * arctangent of t is evaluated by the corresponding formula: + * + * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) + * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) + * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) + * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) + * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double atanhi[] = { + 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ + 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ + 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ + 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ +}; + +static const double atanlo[] = { + 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ + 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ + 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ + 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ +}; + +static const double aT[] = { + 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ + -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ + 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ + -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ + 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ + -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ + 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ + -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ + 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ + -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ + 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ +}; + + static const double +one = 1.0, +huge = 1.0e300; + +double +atan(double x) +{ + double w,s1,s2,z; + int32_t ix,hx,id; + + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x44100000) { /* if |x| >= 2^66 */ + uint32_t low; + GET_LOW_WORD(low,x); + if(ix>0x7ff00000|| + (ix==0x7ff00000&&(low!=0))) + return x+x; /* NaN */ + if(hx>0) return atanhi[3]+atanlo[3]; + else return -atanhi[3]-atanlo[3]; + } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ + if (ix < 0x3e200000) { /* |x| < 2^-29 */ + if(huge+x>one) return x; /* raise inexact */ + } + id = -1; + } else { + x = fabs(x); + if (ix < 0x3ff30000) { /* |x| < 1.1875 */ + if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ + id = 0; x = (2.0*x-one)/(2.0+x); + } else { /* 11/16<=|x|< 19/16 */ + id = 1; x = (x-one)/(x+one); + } + } else { + if (ix < 0x40038000) { /* |x| < 2.4375 */ + id = 2; x = (x-1.5)/(one+1.5*x); + } else { /* 2.4375 <= |x| < 2^66 */ + id = 3; x = -1.0/x; + } + }} + /* end of argument reduction */ + z = x*x; + w = z*z; + /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ + s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); + s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); + if (id<0) return x - x*(s1+s2); + else { + z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); + return (hx<0)? -z:z; + } +} diff --git a/05/musl-0.6.0/src/math/s_atanf.c b/05/musl-0.6.0/src/math/s_atanf.c new file mode 100644 index 0000000..03067e1 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_atanf.c @@ -0,0 +1,95 @@ +/* s_atanf.c -- float version of s_atan.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float atanhi[] = { + 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */ + 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */ + 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */ + 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */ +}; + +static const float atanlo[] = { + 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */ + 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */ + 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */ + 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */ +}; + +static const float aT[] = { + 3.3333334327e-01, /* 0x3eaaaaaa */ + -2.0000000298e-01, /* 0xbe4ccccd */ + 1.4285714924e-01, /* 0x3e124925 */ + -1.1111110449e-01, /* 0xbde38e38 */ + 9.0908870101e-02, /* 0x3dba2e6e */ + -7.6918758452e-02, /* 0xbd9d8795 */ + 6.6610731184e-02, /* 0x3d886b35 */ + -5.8335702866e-02, /* 0xbd6ef16b */ + 4.9768779427e-02, /* 0x3d4bda59 */ + -3.6531571299e-02, /* 0xbd15a221 */ + 1.6285819933e-02, /* 0x3c8569d7 */ +}; + + static const float +one = 1.0, +huge = 1.0e30; + +float +atanf(float x) +{ + float w,s1,s2,z; + int32_t ix,hx,id; + + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x50800000) { /* if |x| >= 2^34 */ + if(ix>0x7f800000) + return x+x; /* NaN */ + if(hx>0) return atanhi[3]+atanlo[3]; + else return -atanhi[3]-atanlo[3]; + } if (ix < 0x3ee00000) { /* |x| < 0.4375 */ + if (ix < 0x31000000) { /* |x| < 2^-29 */ + if(huge+x>one) return x; /* raise inexact */ + } + id = -1; + } else { + x = fabsf(x); + if (ix < 0x3f980000) { /* |x| < 1.1875 */ + if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */ + id = 0; x = ((float)2.0*x-one)/((float)2.0+x); + } else { /* 11/16<=|x|< 19/16 */ + id = 1; x = (x-one)/(x+one); + } + } else { + if (ix < 0x401c0000) { /* |x| < 2.4375 */ + id = 2; x = (x-(float)1.5)/(one+(float)1.5*x); + } else { /* 2.4375 <= |x| < 2^66 */ + id = 3; x = -(float)1.0/x; + } + }} + /* end of argument reduction */ + z = x*x; + w = z*z; + /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ + s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); + s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); + if (id<0) return x - x*(s1+s2); + else { + z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); + return (hx<0)? -z:z; + } +} diff --git a/05/musl-0.6.0/src/math/s_cbrt.c b/05/musl-0.6.0/src/math/s_cbrt.c new file mode 100644 index 0000000..8adcb19 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_cbrt.c @@ -0,0 +1,77 @@ +/* @(#)s_cbrt.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +/* cbrt(x) + * Return cube root of x + */ +static const uint32_t + B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */ + B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ + +static const double +C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */ +D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */ +E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */ +F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */ +G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */ + +double +cbrt(double x) +{ + int32_t hx; + double r,s,t=0.0,w; + uint32_t sign; + uint32_t high,low; + + GET_HIGH_WORD(hx,x); + sign=hx&0x80000000; /* sign= sign(x) */ + hx ^=sign; + if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */ + GET_LOW_WORD(low,x); + if((hx|low)==0) + return(x); /* cbrt(0) is itself */ + + SET_HIGH_WORD(x,hx); /* x <- |x| */ + /* rough cbrt to 5 bits */ + if(hx<0x00100000) /* subnormal number */ + {SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */ + t*=x; GET_HIGH_WORD(high,t); SET_HIGH_WORD(t,high/3+B2); + } + else + SET_HIGH_WORD(t,hx/3+B1); + + + /* new cbrt to 23 bits, may be implemented in single precision */ + r=t*t/x; + s=C+r*t; + t*=G+F/(s+E+D/s); + + /* chopped to 20 bits and make it larger than cbrt(x) */ + GET_HIGH_WORD(high,t); + INSERT_WORDS(t,high+0x00000001,0); + + + /* one step newton iteration to 53 bits with error less than 0.667 ulps */ + s=t*t; /* t*t is exact */ + r=x/s; + w=t+t; + r=(r-t)/(w+r); /* r-s is exact */ + t=t+t*r; + + /* retore the sign bit */ + GET_HIGH_WORD(high,t); + SET_HIGH_WORD(t,high|sign); + return(t); +} diff --git a/05/musl-0.6.0/src/math/s_cbrtf.c b/05/musl-0.6.0/src/math/s_cbrtf.c new file mode 100644 index 0000000..e7b46de --- /dev/null +++ b/05/musl-0.6.0/src/math/s_cbrtf.c @@ -0,0 +1,67 @@ +/* s_cbrtf.c -- float version of s_cbrt.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +/* cbrtf(x) + * Return cube root of x + */ +static const unsigned + B1 = 709958130, /* B1 = (84+2/3-0.03306235651)*2**23 */ + B2 = 642849266; /* B2 = (76+2/3-0.03306235651)*2**23 */ + +static const float +C = 5.4285717010e-01, /* 19/35 = 0x3f0af8b0 */ +D = -7.0530611277e-01, /* -864/1225 = 0xbf348ef1 */ +E = 1.4142856598e+00, /* 99/70 = 0x3fb50750 */ +F = 1.6071428061e+00, /* 45/28 = 0x3fcdb6db */ +G = 3.5714286566e-01; /* 5/14 = 0x3eb6db6e */ + +float +cbrtf(float x) +{ + float r,s,t; + int32_t hx; + uint32_t sign; + uint32_t high; + + GET_FLOAT_WORD(hx,x); + sign=hx&0x80000000; /* sign= sign(x) */ + hx ^=sign; + if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */ + if(hx==0) + return(x); /* cbrt(0) is itself */ + + SET_FLOAT_WORD(x,hx); /* x <- |x| */ + /* rough cbrt to 5 bits */ + if(hx<0x00800000) /* subnormal number */ + {SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */ + t*=x; GET_FLOAT_WORD(high,t); SET_FLOAT_WORD(t,high/3+B2); + } + else + SET_FLOAT_WORD(t,hx/3+B1); + + + /* new cbrt to 23 bits */ + r=t*t/x; + s=C+r*t; + t*=G+F/(s+E+D/s); + + /* retore the sign bit */ + GET_FLOAT_WORD(high,t); + SET_FLOAT_WORD(t,high|sign); + return(t); +} diff --git a/05/musl-0.6.0/src/math/s_ceil.c b/05/musl-0.6.0/src/math/s_ceil.c new file mode 100644 index 0000000..1670cad --- /dev/null +++ b/05/musl-0.6.0/src/math/s_ceil.c @@ -0,0 +1,68 @@ +/* @(#)s_ceil.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * ceil(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to ceil(x). + */ + +#include <math.h> +#include "math_private.h" + +static const double huge = 1.0e300; + +double +ceil(double x) +{ + int32_t i0,i1,j0; + uint32_t i,j; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0<0) {i0=0x80000000;i1=0;} + else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;} + } + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0>0) i0 += (0x00100000)>>j0; + i0 &= (~i); i1=0; + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0>0) { + if(j0==20) i0+=1; + else { + j = i1 + (1<<(52-j0)); + if(j<i1) i0+=1; /* got a carry */ + i1 = j; + } + } + i1 &= (~i); + } + } + INSERT_WORDS(x,i0,i1); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_ceilf.c b/05/musl-0.6.0/src/math/s_ceilf.c new file mode 100644 index 0000000..3615041 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_ceilf.c @@ -0,0 +1,49 @@ +/* s_ceilf.c -- float version of s_ceil.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float huge = 1.0e30; + +float +ceilf(float x) +{ + int32_t i0,j0; + uint32_t i; + + GET_FLOAT_WORD(i0,x); + j0 = ((i0>>23)&0xff)-0x7f; + if(j0<23) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0<0) {i0=0x80000000;} + else if(i0!=0) { i0=0x3f800000;} + } + } else { + i = (0x007fffff)>>j0; + if((i0&i)==0) return x; /* x is integral */ + if(huge+x>(float)0.0) { /* raise inexact flag */ + if(i0>0) i0 += (0x00800000)>>j0; + i0 &= (~i); + } + } + } else { + if(j0==0x80) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } + SET_FLOAT_WORD(x,i0); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_copysign.c b/05/musl-0.6.0/src/math/s_copysign.c new file mode 100644 index 0000000..59d3877 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_copysign.c @@ -0,0 +1,30 @@ +/* @(#)s_copysign.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * copysign(double x, double y) + * copysign(x,y) returns a value with the magnitude of x and + * with the sign bit of y. + */ + +#include <math.h> +#include "math_private.h" + +double +copysign(double x, double y) +{ + uint32_t hx,hy; + GET_HIGH_WORD(hx,x); + GET_HIGH_WORD(hy,y); + SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000)); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_copysignf.c b/05/musl-0.6.0/src/math/s_copysignf.c new file mode 100644 index 0000000..d650e8e --- /dev/null +++ b/05/musl-0.6.0/src/math/s_copysignf.c @@ -0,0 +1,33 @@ +/* s_copysignf.c -- float version of s_copysign.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * copysignf(float x, float y) + * copysignf(x,y) returns a value with the magnitude of x and + * with the sign bit of y. + */ + +#include <math.h> +#include "math_private.h" + +float +copysignf(float x, float y) +{ + uint32_t ix,iy; + GET_FLOAT_WORD(ix,x); + GET_FLOAT_WORD(iy,y); + SET_FLOAT_WORD(x,(ix&0x7fffffff)|(iy&0x80000000)); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_cos.c b/05/musl-0.6.0/src/math/s_cos.c new file mode 100644 index 0000000..1893ab1 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_cos.c @@ -0,0 +1,74 @@ +/* @(#)s_cos.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* cos(x) + * Return cosine function of x. + * + * kernel function: + * __kernel_sin ... sine function on [-pi/4,pi/4] + * __kernel_cos ... cosine function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include <math.h> +#include "math_private.h" + +double +cos(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_cos(x,z); + + /* cos(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + switch(n&3) { + case 0: return __kernel_cos(y[0],y[1]); + case 1: return -__kernel_sin(y[0],y[1],1); + case 2: return -__kernel_cos(y[0],y[1]); + default: + return __kernel_sin(y[0],y[1],1); + } + } +} diff --git a/05/musl-0.6.0/src/math/s_cosf.c b/05/musl-0.6.0/src/math/s_cosf.c new file mode 100644 index 0000000..14b8e98 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_cosf.c @@ -0,0 +1,47 @@ +/* s_cosf.c -- float version of s_cos.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one=1.0; + +float +cosf(float x) +{ + float y[2],z=0.0; + int32_t n,ix; + + GET_FLOAT_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3f490fd8) return __kernel_cosf(x,z); + + /* cos(Inf or NaN) is NaN */ + else if (ix>=0x7f800000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2f(x,y); + switch(n&3) { + case 0: return __kernel_cosf(y[0],y[1]); + case 1: return -__kernel_sinf(y[0],y[1],1); + case 2: return -__kernel_cosf(y[0],y[1]); + default: + return __kernel_sinf(y[0],y[1],1); + } + } +} diff --git a/05/musl-0.6.0/src/math/s_erf.c b/05/musl-0.6.0/src/math/s_erf.c new file mode 100644 index 0000000..e321fee --- /dev/null +++ b/05/musl-0.6.0/src/math/s_erf.c @@ -0,0 +1,298 @@ +/* @(#)s_erf.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* double erf(double x) + * double erfc(double x) + * x + * 2 |\ + * erf(x) = --------- | exp(-t*t)dt + * sqrt(pi) \| + * 0 + * + * erfc(x) = 1-erf(x) + * Note that + * erf(-x) = -erf(x) + * erfc(-x) = 2 - erfc(x) + * + * Method: + * 1. For |x| in [0, 0.84375] + * erf(x) = x + x*R(x^2) + * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] + * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] + * where R = P/Q where P is an odd poly of degree 8 and + * Q is an odd poly of degree 10. + * -57.90 + * | R - (erf(x)-x)/x | <= 2 + * + * + * Remark. The formula is derived by noting + * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) + * and that + * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 + * is close to one. The interval is chosen because the fix + * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is + * near 0.6174), and by some experiment, 0.84375 is chosen to + * guarantee the error is less than one ulp for erf. + * + * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and + * c = 0.84506291151 rounded to single (24 bits) + * erf(x) = sign(x) * (c + P1(s)/Q1(s)) + * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 + * 1+(c+P1(s)/Q1(s)) if x < 0 + * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 + * Remark: here we use the taylor series expansion at x=1. + * erf(1+s) = erf(1) + s*Poly(s) + * = 0.845.. + P1(s)/Q1(s) + * That is, we use rational approximation to approximate + * erf(1+s) - (c = (single)0.84506291151) + * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] + * where + * P1(s) = degree 6 poly in s + * Q1(s) = degree 6 poly in s + * + * 3. For x in [1.25,1/0.35(~2.857143)], + * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) + * erf(x) = 1 - erfc(x) + * where + * R1(z) = degree 7 poly in z, (z=1/x^2) + * S1(z) = degree 8 poly in z + * + * 4. For x in [1/0.35,28] + * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 + * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 + * = 2.0 - tiny (if x <= -6) + * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else + * erf(x) = sign(x)*(1.0 - tiny) + * where + * R2(z) = degree 6 poly in z, (z=1/x^2) + * S2(z) = degree 7 poly in z + * + * Note1: + * To compute exp(-x*x-0.5625+R/S), let s be a single + * precision number and s := x; then + * -x*x = -s*s + (s-x)*(s+x) + * exp(-x*x-0.5626+R/S) = + * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); + * Note2: + * Here 4 and 5 make use of the asymptotic series + * exp(-x*x) + * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) + * x*sqrt(pi) + * We use rational approximation to approximate + * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 + * Here is the error bound for R1/S1 and R2/S2 + * |R1/S1 - f(x)| < 2**(-62.57) + * |R2/S2 - f(x)| < 2**(-61.52) + * + * 5. For inf > x >= 28 + * erf(x) = sign(x) *(1 - tiny) (raise inexact) + * erfc(x) = tiny*tiny (raise underflow) if x > 0 + * = 2 - tiny if x<0 + * + * 7. Special case: + * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, + * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, + * erfc/erf(NaN) is NaN + */ + + +#include <math.h> +#include "math_private.h" + +static const double +tiny = 1e-300, +half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ + /* c = (float)0.84506291151 */ +erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ +/* + * Coefficients for approximation to erf on [0,0.84375] + */ +efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ +efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ +pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ +pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ +pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ +pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ +pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ +qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ +qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ +qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ +qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ +qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ +pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ +pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ +pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ +pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ +pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ +pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ +qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ +qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ +qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ +qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ +qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ +qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ +ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ +ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ +ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ +ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ +ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ +ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ +ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ +sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ +sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ +sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ +sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ +sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ +sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ +sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ +sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ +/* + * Coefficients for approximation to erfc in [1/.35,28] + */ +rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ +rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ +rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ +rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ +rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ +rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ +rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ +sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ +sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ +sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ +sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ +sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ +sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ +sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ + +double +erf(double x) +{ + int32_t hx,ix,i; + double R,S,P,Q,s,y,z,r; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7ff00000) { /* erf(nan)=nan */ + i = ((uint32_t)hx>>31)<<1; + return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ + } + + if(ix < 0x3feb0000) { /* |x|<0.84375 */ + if(ix < 0x3e300000) { /* |x|<2**-28 */ + if (ix < 0x00800000) + return 0.125*(8.0*x+efx8*x); /*avoid underflow */ + return x + efx*x; + } + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + return x + x*y; + } + if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ + s = fabs(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) return erx + P/Q; else return -erx - P/Q; + } + if (ix >= 0x40180000) { /* inf>|x|>=6 */ + if(hx>=0) return one-tiny; else return tiny-one; + } + x = fabs(x); + s = one/(x*x); + if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/0.35 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + z = x; + SET_LOW_WORD(z,0); + r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S); + if(hx>=0) return one-r/x; else return r/x-one; +} + +double +erfc(double x) +{ + int32_t hx,ix; + double R,S,P,Q,s,y,z,r; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7ff00000) { /* erfc(nan)=nan */ + /* erfc(+-inf)=0,2 */ + return (double)(((uint32_t)hx>>31)<<1)+one/x; + } + + if(ix < 0x3feb0000) { /* |x|<0.84375 */ + if(ix < 0x3c700000) /* |x|<2**-56 */ + return one-x; + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + if(hx < 0x3fd00000) { /* x<1/4 */ + return one-(x+x*y); + } else { + r = x*y; + r += (x-half); + return half - r ; + } + } + if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ + s = fabs(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) { + z = one-erx; return z - P/Q; + } else { + z = erx+P/Q; return one+z; + } + } + if (ix < 0x403c0000) { /* |x|<28 */ + x = fabs(x); + s = one/(x*x); + if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/.35 ~ 2.857143 */ + if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + z = x; + SET_LOW_WORD(z,0); + r = exp(-z*z-0.5625)* + exp((z-x)*(z+x)+R/S); + if(hx>0) return r/x; else return two-r/x; + } else { + if(hx>0) return tiny*tiny; else return two-tiny; + } +} diff --git a/05/musl-0.6.0/src/math/s_erff.c b/05/musl-0.6.0/src/math/s_erff.c new file mode 100644 index 0000000..28e2f7b --- /dev/null +++ b/05/musl-0.6.0/src/math/s_erff.c @@ -0,0 +1,207 @@ +/* s_erff.c -- float version of s_erf.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +tiny = 1e-30, +half= 5.0000000000e-01, /* 0x3F000000 */ +one = 1.0000000000e+00, /* 0x3F800000 */ +two = 2.0000000000e+00, /* 0x40000000 */ + /* c = (subfloat)0.84506291151 */ +erx = 8.4506291151e-01, /* 0x3f58560b */ +/* + * Coefficients for approximation to erf on [0,0.84375] + */ +efx = 1.2837916613e-01, /* 0x3e0375d4 */ +efx8= 1.0270333290e+00, /* 0x3f8375d4 */ +pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ +pp1 = -3.2504209876e-01, /* 0xbea66beb */ +pp2 = -2.8481749818e-02, /* 0xbce9528f */ +pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ +pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ +qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ +qq2 = 6.5022252500e-02, /* 0x3d852a63 */ +qq3 = 5.0813062117e-03, /* 0x3ba68116 */ +qq4 = 1.3249473704e-04, /* 0x390aee49 */ +qq5 = -3.9602282413e-06, /* 0xb684e21a */ +/* + * Coefficients for approximation to erf in [0.84375,1.25] + */ +pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ +pa1 = 4.1485610604e-01, /* 0x3ed46805 */ +pa2 = -3.7220788002e-01, /* 0xbebe9208 */ +pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ +pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ +pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ +pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ +qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ +qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ +qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ +qa4 = 1.2617121637e-01, /* 0x3e013307 */ +qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ +qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ +/* + * Coefficients for approximation to erfc in [1.25,1/0.35] + */ +ra0 = -9.8649440333e-03, /* 0xbc21a093 */ +ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ +ra2 = -1.0558626175e+01, /* 0xc128f022 */ +ra3 = -6.2375331879e+01, /* 0xc2798057 */ +ra4 = -1.6239666748e+02, /* 0xc322658c */ +ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ +ra6 = -8.1287437439e+01, /* 0xc2a2932b */ +ra7 = -9.8143291473e+00, /* 0xc11d077e */ +sa1 = 1.9651271820e+01, /* 0x419d35ce */ +sa2 = 1.3765776062e+02, /* 0x4309a863 */ +sa3 = 4.3456588745e+02, /* 0x43d9486f */ +sa4 = 6.4538726807e+02, /* 0x442158c9 */ +sa5 = 4.2900814819e+02, /* 0x43d6810b */ +sa6 = 1.0863500214e+02, /* 0x42d9451f */ +sa7 = 6.5702495575e+00, /* 0x40d23f7c */ +sa8 = -6.0424413532e-02, /* 0xbd777f97 */ +/* + * Coefficients for approximation to erfc in [1/.35,28] + */ +rb0 = -9.8649431020e-03, /* 0xbc21a092 */ +rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ +rb2 = -1.7757955551e+01, /* 0xc18e104b */ +rb3 = -1.6063638306e+02, /* 0xc320a2ea */ +rb4 = -6.3756646729e+02, /* 0xc41f6441 */ +rb5 = -1.0250950928e+03, /* 0xc480230b */ +rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ +sb1 = 3.0338060379e+01, /* 0x41f2b459 */ +sb2 = 3.2579251099e+02, /* 0x43a2e571 */ +sb3 = 1.5367296143e+03, /* 0x44c01759 */ +sb4 = 3.1998581543e+03, /* 0x4547fdbb */ +sb5 = 2.5530502930e+03, /* 0x451f90ce */ +sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ +sb7 = -2.2440952301e+01; /* 0xc1b38712 */ + +float +erff(float x) +{ + int32_t hx,ix,i; + float R,S,P,Q,s,y,z,r; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7f800000) { /* erf(nan)=nan */ + i = ((uint32_t)hx>>31)<<1; + return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ + } + + if(ix < 0x3f580000) { /* |x|<0.84375 */ + if(ix < 0x31800000) { /* |x|<2**-28 */ + if (ix < 0x04000000) + /*avoid underflow */ + return (float)0.125*((float)8.0*x+efx8*x); + return x + efx*x; + } + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + return x + x*y; + } + if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ + s = fabsf(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) return erx + P/Q; else return -erx - P/Q; + } + if (ix >= 0x40c00000) { /* inf>|x|>=6 */ + if(hx>=0) return one-tiny; else return tiny-one; + } + x = fabsf(x); + s = one/(x*x); + if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/0.35 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + GET_FLOAT_WORD(ix,x); + SET_FLOAT_WORD(z,ix&0xfffff000); + r = expf(-z*z-(float)0.5625)*expf((z-x)*(z+x)+R/S); + if(hx>=0) return one-r/x; else return r/x-one; +} + +float +erfcf(float x) +{ + int32_t hx,ix; + float R,S,P,Q,s,y,z,r; + GET_FLOAT_WORD(hx,x); + ix = hx&0x7fffffff; + if(ix>=0x7f800000) { /* erfc(nan)=nan */ + /* erfc(+-inf)=0,2 */ + return (float)(((uint32_t)hx>>31)<<1)+one/x; + } + + if(ix < 0x3f580000) { /* |x|<0.84375 */ + if(ix < 0x23800000) /* |x|<2**-56 */ + return one-x; + z = x*x; + r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); + s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); + y = r/s; + if(hx < 0x3e800000) { /* x<1/4 */ + return one-(x+x*y); + } else { + r = x*y; + r += (x-half); + return half - r ; + } + } + if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ + s = fabsf(x)-one; + P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); + Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); + if(hx>=0) { + z = one-erx; return z - P/Q; + } else { + z = erx+P/Q; return one+z; + } + } + if (ix < 0x41e00000) { /* |x|<28 */ + x = fabsf(x); + s = one/(x*x); + if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ + R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( + ra5+s*(ra6+s*ra7)))))); + S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( + sa5+s*(sa6+s*(sa7+s*sa8))))))); + } else { /* |x| >= 1/.35 ~ 2.857143 */ + if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ + R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( + rb5+s*rb6))))); + S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( + sb5+s*(sb6+s*sb7)))))); + } + GET_FLOAT_WORD(ix,x); + SET_FLOAT_WORD(z,ix&0xfffff000); + r = expf(-z*z-(float)0.5625)* + expf((z-x)*(z+x)+R/S); + if(hx>0) return r/x; else return two-r/x; + } else { + if(hx>0) return tiny*tiny; else return two-tiny; + } +} diff --git a/05/musl-0.6.0/src/math/s_expm1.c b/05/musl-0.6.0/src/math/s_expm1.c new file mode 100644 index 0000000..6f1f667 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_expm1.c @@ -0,0 +1,217 @@ +/* @(#)s_expm1.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* expm1(x) + * Returns exp(x)-1, the exponential of x minus 1. + * + * Method + * 1. Argument reduction: + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 + * + * Here a correction term c will be computed to compensate + * the error in r when rounded to a floating-point number. + * + * 2. Approximating expm1(r) by a special rational function on + * the interval [0,0.34658]: + * Since + * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... + * we define R1(r*r) by + * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) + * That is, + * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) + * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) + * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... + * We use a special Reme algorithm on [0,0.347] to generate + * a polynomial of degree 5 in r*r to approximate R1. The + * maximum error of this polynomial approximation is bounded + * by 2**-61. In other words, + * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 + * where Q1 = -1.6666666666666567384E-2, + * Q2 = 3.9682539681370365873E-4, + * Q3 = -9.9206344733435987357E-6, + * Q4 = 2.5051361420808517002E-7, + * Q5 = -6.2843505682382617102E-9; + * (where z=r*r, and the values of Q1 to Q5 are listed below) + * with error bounded by + * | 5 | -61 + * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 + * | | + * + * expm1(r) = exp(r)-1 is then computed by the following + * specific way which minimize the accumulation rounding error: + * 2 3 + * r r [ 3 - (R1 + R1*r/2) ] + * expm1(r) = r + --- + --- * [--------------------] + * 2 2 [ 6 - r*(3 - R1*r/2) ] + * + * To compensate the error in the argument reduction, we use + * expm1(r+c) = expm1(r) + c + expm1(r)*c + * ~ expm1(r) + c + r*c + * Thus c+r*c will be added in as the correction terms for + * expm1(r+c). Now rearrange the term to avoid optimization + * screw up: + * ( 2 2 ) + * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) + * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) + * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) + * ( ) + * + * = r - E + * 3. Scale back to obtain expm1(x): + * From step 1, we have + * expm1(x) = either 2^k*[expm1(r)+1] - 1 + * = or 2^k*[expm1(r) + (1-2^-k)] + * 4. Implementation notes: + * (A). To save one multiplication, we scale the coefficient Qi + * to Qi*2^i, and replace z by (x^2)/2. + * (B). To achieve maximum accuracy, we compute expm1(x) by + * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) + * (ii) if k=0, return r-E + * (iii) if k=-1, return 0.5*(r-E)-0.5 + * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) + * else return 1.0+2.0*(r-E); + * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) + * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else + * (vii) return 2^k(1-((E+2^-k)-r)) + * + * Special cases: + * expm1(INF) is INF, expm1(NaN) is NaN; + * expm1(-INF) is -1, and + * for finite argument, only expm1(0)=0 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then expm1(x) overflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include <math.h> +#include "math_private.h" + +static const double +one = 1.0, +huge = 1.0e+300, +tiny = 1.0e-300, +o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */ +ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */ +ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */ +invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */ + /* scaled coefficients related to expm1 */ +Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */ +Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */ +Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */ +Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */ +Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */ + +double +expm1(double x) +{ + double y,hi,lo,c=0.0,t,e,hxs,hfx,r1; + int32_t k,xsb; + uint32_t hx; + + GET_HIGH_WORD(hx,x); + xsb = hx&0x80000000; /* sign bit of x */ + if(xsb==0) y=x; else y= -x; /* y = |x| */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out huge and non-finite argument */ + if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */ + if(hx >= 0x40862E42) { /* if |x|>=709.78... */ + if(hx>=0x7ff00000) { + uint32_t low; + GET_LOW_WORD(low,x); + if(((hx&0xfffff)|low)!=0) + return x+x; /* NaN */ + else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ + } + if(x > o_threshold) return huge*huge; /* overflow */ + } + if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */ + if(x+tiny<0.0) /* raise inexact */ + return tiny-one; /* return -1 */ + } + } + + /* argument reduction */ + if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + if(xsb==0) + {hi = x - ln2_hi; lo = ln2_lo; k = 1;} + else + {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} + } else { + k = invln2*x+((xsb==0)?0.5:-0.5); + t = k; + hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ + lo = t*ln2_lo; + } + x = hi - lo; + c = (hi-x)-lo; + } + else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */ + t = huge+x; /* return x with inexact flags when x!=0 */ + return x - (t-(huge+x)); + } + else k = 0; + + /* x is now in primary range */ + hfx = 0.5*x; + hxs = x*hfx; + r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); + t = 3.0-r1*hfx; + e = hxs*((r1-t)/(6.0 - x*t)); + if(k==0) return x - (x*e-hxs); /* c is 0 */ + else { + e = (x*(e-c)-c); + e -= hxs; + if(k== -1) return 0.5*(x-e)-0.5; + if(k==1) { + if(x < -0.25) return -2.0*(e-(x+0.5)); + else return one+2.0*(x-e); + } + if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ + uint32_t high; + y = one-(e-x); + GET_HIGH_WORD(high,y); + SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ + return y-one; + } + t = one; + if(k<20) { + uint32_t high; + SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */ + y = t-(e-x); + GET_HIGH_WORD(high,y); + SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ + } else { + uint32_t high; + SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */ + y = x-(e+t); + y += one; + GET_HIGH_WORD(high,y); + SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */ + } + } + return y; +} diff --git a/05/musl-0.6.0/src/math/s_expm1f.c b/05/musl-0.6.0/src/math/s_expm1f.c new file mode 100644 index 0000000..b22cf0f --- /dev/null +++ b/05/musl-0.6.0/src/math/s_expm1f.c @@ -0,0 +1,122 @@ +/* s_expm1f.c -- float version of s_expm1.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +one = 1.0, +huge = 1.0e+30, +tiny = 1.0e-30, +o_threshold = 8.8721679688e+01,/* 0x42b17180 */ +ln2_hi = 6.9313812256e-01,/* 0x3f317180 */ +ln2_lo = 9.0580006145e-06,/* 0x3717f7d1 */ +invln2 = 1.4426950216e+00,/* 0x3fb8aa3b */ + /* scaled coefficients related to expm1 */ +Q1 = -3.3333335072e-02, /* 0xbd088889 */ +Q2 = 1.5873016091e-03, /* 0x3ad00d01 */ +Q3 = -7.9365076090e-05, /* 0xb8a670cd */ +Q4 = 4.0082177293e-06, /* 0x36867e54 */ +Q5 = -2.0109921195e-07; /* 0xb457edbb */ + +float +expm1f(float x) +{ + float y,hi,lo,c=0.0,t,e,hxs,hfx,r1; + int32_t k,xsb; + uint32_t hx; + + GET_FLOAT_WORD(hx,x); + xsb = hx&0x80000000; /* sign bit of x */ + if(xsb==0) y=x; else y= -x; /* y = |x| */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out huge and non-finite argument */ + if(hx >= 0x4195b844) { /* if |x|>=27*ln2 */ + if(hx >= 0x42b17218) { /* if |x|>=88.721... */ + if(hx>0x7f800000) + return x+x; /* NaN */ + if(hx==0x7f800000) + return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */ + if(x > o_threshold) return huge*huge; /* overflow */ + } + if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */ + if(x+tiny<(float)0.0) /* raise inexact */ + return tiny-one; /* return -1 */ + } + } + + /* argument reduction */ + if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ + if(xsb==0) + {hi = x - ln2_hi; lo = ln2_lo; k = 1;} + else + {hi = x + ln2_hi; lo = -ln2_lo; k = -1;} + } else { + k = invln2*x+((xsb==0)?(float)0.5:(float)-0.5); + t = k; + hi = x - t*ln2_hi; /* t*ln2_hi is exact here */ + lo = t*ln2_lo; + } + x = hi - lo; + c = (hi-x)-lo; + } + else if(hx < 0x33000000) { /* when |x|<2**-25, return x */ + t = huge+x; /* return x with inexact flags when x!=0 */ + return x - (t-(huge+x)); + } + else k = 0; + + /* x is now in primary range */ + hfx = (float)0.5*x; + hxs = x*hfx; + r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5)))); + t = (float)3.0-r1*hfx; + e = hxs*((r1-t)/((float)6.0 - x*t)); + if(k==0) return x - (x*e-hxs); /* c is 0 */ + else { + e = (x*(e-c)-c); + e -= hxs; + if(k== -1) return (float)0.5*(x-e)-(float)0.5; + if(k==1) { + if(x < (float)-0.25) return -(float)2.0*(e-(x+(float)0.5)); + else return one+(float)2.0*(x-e); + } + if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */ + int32_t i; + y = one-(e-x); + GET_FLOAT_WORD(i,y); + SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */ + return y-one; + } + t = one; + if(k<23) { + int32_t i; + SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */ + y = t-(e-x); + GET_FLOAT_WORD(i,y); + SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */ + } else { + int32_t i; + SET_FLOAT_WORD(t,((0x7f-k)<<23)); /* 2^-k */ + y = x-(e+t); + y += one; + GET_FLOAT_WORD(i,y); + SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */ + } + } + return y; +} diff --git a/05/musl-0.6.0/src/math/s_fabs.c b/05/musl-0.6.0/src/math/s_fabs.c new file mode 100644 index 0000000..7443325 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_fabs.c @@ -0,0 +1,27 @@ +/* @(#)s_fabs.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fabs(x) returns the absolute value of x. + */ + +#include <math.h> +#include "math_private.h" + +double +fabs(double x) +{ + uint32_t high; + GET_HIGH_WORD(high,x); + SET_HIGH_WORD(x,high&0x7fffffff); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_fabsf.c b/05/musl-0.6.0/src/math/s_fabsf.c new file mode 100644 index 0000000..655d57d --- /dev/null +++ b/05/musl-0.6.0/src/math/s_fabsf.c @@ -0,0 +1,30 @@ +/* s_fabsf.c -- float version of s_fabs.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * fabsf(x) returns the absolute value of x. + */ + +#include <math.h> +#include "math_private.h" + +float +fabsf(float x) +{ + uint32_t ix; + GET_FLOAT_WORD(ix,x); + SET_FLOAT_WORD(x,ix&0x7fffffff); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_floor.c b/05/musl-0.6.0/src/math/s_floor.c new file mode 100644 index 0000000..273cf6f --- /dev/null +++ b/05/musl-0.6.0/src/math/s_floor.c @@ -0,0 +1,69 @@ +/* @(#)s_floor.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * floor(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to floor(x). + */ + +#include <math.h> +#include "math_private.h" + +static const double huge = 1.0e300; + +double +floor(double x) +{ + int32_t i0,i1,j0; + uint32_t i,j; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0>=0) {i0=i1=0;} + else if(((i0&0x7fffffff)|i1)!=0) + { i0=0xbff00000;i1=0;} + } + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) i0 += (0x00100000)>>j0; + i0 &= (~i); i1=0; + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + if(i0<0) { + if(j0==20) i0+=1; + else { + j = i1+(1<<(52-j0)); + if(j<i1) i0 +=1 ; /* got a carry */ + i1=j; + } + } + i1 &= (~i); + } + } + INSERT_WORDS(x,i0,i1); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_floorf.c b/05/musl-0.6.0/src/math/s_floorf.c new file mode 100644 index 0000000..1164dec --- /dev/null +++ b/05/musl-0.6.0/src/math/s_floorf.c @@ -0,0 +1,58 @@ +/* s_floorf.c -- float version of s_floor.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * floorf(x) + * Return x rounded toward -inf to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to floorf(x). + */ + +#include <math.h> +#include "math_private.h" + +static const float huge = 1.0e30; + +float +floorf(float x) +{ + int32_t i0,j0; + uint32_t i; + GET_FLOAT_WORD(i0,x); + j0 = ((i0>>23)&0xff)-0x7f; + if(j0<23) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */ + if(i0>=0) {i0=0;} + else if((i0&0x7fffffff)!=0) + { i0=0xbf800000;} + } + } else { + i = (0x007fffff)>>j0; + if((i0&i)==0) return x; /* x is integral */ + if(huge+x>(float)0.0) { /* raise inexact flag */ + if(i0<0) i0 += (0x00800000)>>j0; + i0 &= (~i); + } + } + } else { + if(j0==0x80) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } + SET_FLOAT_WORD(x,i0); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_ilogb.c b/05/musl-0.6.0/src/math/s_ilogb.c new file mode 100644 index 0000000..f1ac498 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_ilogb.c @@ -0,0 +1,45 @@ +/* @(#)s_ilogb.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* ilogb(double x) + * return the binary exponent of non-zero x + * ilogb(0) = FP_ILOGB0 + * ilogb(NaN) = FP_ILOGBNAN (no signal is raised) + * ilogb(inf) = INT_MAX (no signal is raised) + */ + +#include <limits.h> + +#include <math.h> +#include "math_private.h" + +int ilogb(double x) +{ + int32_t hx,lx,ix; + + EXTRACT_WORDS(hx,lx,x); + hx &= 0x7fffffff; + if(hx<0x00100000) { + if((hx|lx)==0) + return FP_ILOGB0; + else /* subnormal x */ + if(hx==0) { + for (ix = -1043; lx>0; lx<<=1) ix -=1; + } else { + for (ix = -1022,hx<<=11; hx>0; hx<<=1) ix -=1; + } + return ix; + } + else if (hx<0x7ff00000) return (hx>>20)-1023; + else if (hx>0x7ff00000 || lx!=0) return FP_ILOGBNAN; + else return INT_MAX; +} diff --git a/05/musl-0.6.0/src/math/s_ilogbf.c b/05/musl-0.6.0/src/math/s_ilogbf.c new file mode 100644 index 0000000..30359fe --- /dev/null +++ b/05/musl-0.6.0/src/math/s_ilogbf.c @@ -0,0 +1,37 @@ +/* s_ilogbf.c -- float version of s_ilogb.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <limits.h> + +#include <math.h> +#include "math_private.h" + +int ilogbf(float x) +{ + int32_t hx,ix; + + GET_FLOAT_WORD(hx,x); + hx &= 0x7fffffff; + if(hx<0x00800000) { + if(hx==0) + return FP_ILOGB0; + else /* subnormal x */ + for (ix = -126,hx<<=8; hx>0; hx<<=1) ix -=1; + return ix; + } + else if (hx<0x7f800000) return (hx>>23)-127; + else if (hx>0x7f800000) return FP_ILOGBNAN; + else return INT_MAX; +} diff --git a/05/musl-0.6.0/src/math/s_ldexp.c b/05/musl-0.6.0/src/math/s_ldexp.c new file mode 100644 index 0000000..f4d1cd6 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_ldexp.c @@ -0,0 +1,6 @@ +#include <math.h> + +double ldexp(double x, int n) +{ + return scalbn(x, n); +} diff --git a/05/musl-0.6.0/src/math/s_ldexpf.c b/05/musl-0.6.0/src/math/s_ldexpf.c new file mode 100644 index 0000000..3bad5f3 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_ldexpf.c @@ -0,0 +1,6 @@ +#include <math.h> + +float ldexpf(float x, int n) +{ + return scalbnf(x, n); +} diff --git a/05/musl-0.6.0/src/math/s_llrint.c b/05/musl-0.6.0/src/math/s_llrint.c new file mode 100644 index 0000000..2b1e00d --- /dev/null +++ b/05/musl-0.6.0/src/math/s_llrint.c @@ -0,0 +1,8 @@ +#include <math.h> + +// FIXME: incorrect exception behavior + +long long llrint(double x) +{ + return rint(x); +} diff --git a/05/musl-0.6.0/src/math/s_log1p.c b/05/musl-0.6.0/src/math/s_log1p.c new file mode 100644 index 0000000..886d5ab --- /dev/null +++ b/05/musl-0.6.0/src/math/s_log1p.c @@ -0,0 +1,157 @@ +/* @(#)s_log1p.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* double log1p(double x) + * + * Method : + * 1. Argument Reduction: find k and f such that + * 1+x = 2^k * (1+f), + * where sqrt(2)/2 < 1+f < sqrt(2) . + * + * Note. If k=0, then f=x is exact. However, if k!=0, then f + * may not be representable exactly. In that case, a correction + * term is need. Let u=1+x rounded. Let c = (1+x)-u, then + * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), + * and add back the correction term c/u. + * (Note: when x > 2**53, one can simply return log(x)) + * + * 2. Approximation of log1p(f). + * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + * = 2s + 2/3 s**3 + 2/5 s**5 + ....., + * = 2s + s*R + * We use a special Reme algorithm on [0,0.1716] to generate + * a polynomial of degree 14 to approximate R The maximum error + * of this polynomial approximation is bounded by 2**-58.45. In + * other words, + * 2 4 6 8 10 12 14 + * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s + * (the values of Lp1 to Lp7 are listed in the program) + * and + * | 2 14 | -58.45 + * | Lp1*s +...+Lp7*s - R(z) | <= 2 + * | | + * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + * In order to guarantee error in log below 1ulp, we compute log + * by + * log1p(f) = f - (hfsq - s*(hfsq+R)). + * + * 3. Finally, log1p(x) = k*ln2 + log1p(f). + * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) + * Here ln2 is split into two floating point number: + * ln2_hi + ln2_lo, + * where n*ln2_hi is always exact for |n| < 2000. + * + * Special cases: + * log1p(x) is NaN with signal if x < -1 (including -INF) ; + * log1p(+INF) is +INF; log1p(-1) is -INF with signal; + * log1p(NaN) is that NaN with no signal. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + * + * Note: Assuming log() return accurate answer, the following + * algorithm can be used to compute log1p(x) to within a few ULP: + * + * u = 1+x; + * if(u==1.0) return x ; else + * return log(u)*(x/(u-1.0)); + * + * See HP-15C Advanced Functions Handbook, p.193. + */ + +#include <math.h> +#include "math_private.h" + +static const double +ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ +ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ +two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ +Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ +Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ +Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ +Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ +Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ +Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ +Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ + +static const double zero = 0.0; + +double +log1p(double x) +{ + double hfsq,f=0,c=0,s,z,R,u; + int32_t k,hx,hu=0,ax; + + GET_HIGH_WORD(hx,x); + ax = hx&0x7fffffff; + + k = 1; + if (hx < 0x3FDA827A) { /* x < 0.41422 */ + if(ax>=0x3ff00000) { /* x <= -1.0 */ + if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */ + else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ + } + if(ax<0x3e200000) { /* |x| < 2**-29 */ + if(two54+x>zero /* raise inexact */ + &&ax<0x3c900000) /* |x| < 2**-54 */ + return x; + else + return x - x*x*0.5; + } + if(hx>0||hx<=((int32_t)0xbfd2bec3)) { + k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */ + } + if (hx >= 0x7ff00000) return x+x; + if(k!=0) { + if(hx<0x43400000) { + u = 1.0+x; + GET_HIGH_WORD(hu,u); + k = (hu>>20)-1023; + c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ + c /= u; + } else { + u = x; + GET_HIGH_WORD(hu,u); + k = (hu>>20)-1023; + c = 0; + } + hu &= 0x000fffff; + if(hu<0x6a09e) { + SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */ + } else { + k += 1; + SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */ + hu = (0x00100000-hu)>>2; + } + f = u-1.0; + } + hfsq=0.5*f*f; + if(hu==0) { /* |f| < 2**-20 */ + if(f==zero) { if(k==0) return zero; + else {c += k*ln2_lo; return k*ln2_hi+c;} } + R = hfsq*(1.0-0.66666666666666666*f); + if(k==0) return f-R; else + return k*ln2_hi-((R-(k*ln2_lo+c))-f); + } + s = f/(2.0+f); + z = s*s; + R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); +} diff --git a/05/musl-0.6.0/src/math/s_log1pf.c b/05/musl-0.6.0/src/math/s_log1pf.c new file mode 100644 index 0000000..dcdd6bb --- /dev/null +++ b/05/musl-0.6.0/src/math/s_log1pf.c @@ -0,0 +1,96 @@ +/* s_log1pf.c -- float version of s_log1p.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ +ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ +two25 = 3.355443200e+07, /* 0x4c000000 */ +Lp1 = 6.6666668653e-01, /* 3F2AAAAB */ +Lp2 = 4.0000000596e-01, /* 3ECCCCCD */ +Lp3 = 2.8571429849e-01, /* 3E924925 */ +Lp4 = 2.2222198546e-01, /* 3E638E29 */ +Lp5 = 1.8183572590e-01, /* 3E3A3325 */ +Lp6 = 1.5313838422e-01, /* 3E1CD04F */ +Lp7 = 1.4798198640e-01; /* 3E178897 */ + +static const float zero = 0.0; + +float +log1pf(float x) +{ + float hfsq,f=0,c=0,s,z,R,u; + int32_t k,hx,hu=0,ax; + + GET_FLOAT_WORD(hx,x); + ax = hx&0x7fffffff; + + k = 1; + if (hx < 0x3ed413d7) { /* x < 0.41422 */ + if(ax>=0x3f800000) { /* x <= -1.0 */ + if(x==(float)-1.0) return -two25/zero; /* log1p(-1)=+inf */ + else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ + } + if(ax<0x31000000) { /* |x| < 2**-29 */ + if(two25+x>zero /* raise inexact */ + &&ax<0x24800000) /* |x| < 2**-54 */ + return x; + else + return x - x*x*(float)0.5; + } + if(hx>0||hx<=((int32_t)0xbe95f61f)) { + k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */ + } + if (hx >= 0x7f800000) return x+x; + if(k!=0) { + if(hx<0x5a000000) { + u = (float)1.0+x; + GET_FLOAT_WORD(hu,u); + k = (hu>>23)-127; + /* correction term */ + c = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0); + c /= u; + } else { + u = x; + GET_FLOAT_WORD(hu,u); + k = (hu>>23)-127; + c = 0; + } + hu &= 0x007fffff; + if(hu<0x3504f7) { + SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */ + } else { + k += 1; + SET_FLOAT_WORD(u,hu|0x3f000000); /* normalize u/2 */ + hu = (0x00800000-hu)>>2; + } + f = u-(float)1.0; + } + hfsq=(float)0.5*f*f; + if(hu==0) { /* |f| < 2**-20 */ + if(f==zero) { if(k==0) return zero; + else {c += k*ln2_lo; return k*ln2_hi+c;} } + R = hfsq*((float)1.0-(float)0.66666666666666666*f); + if(k==0) return f-R; else + return k*ln2_hi-((R-(k*ln2_lo+c))-f); + } + s = f/((float)2.0+f); + z = s*s; + R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); + if(k==0) return f-(hfsq-s*(hfsq+R)); else + return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); +} diff --git a/05/musl-0.6.0/src/math/s_logb.c b/05/musl-0.6.0/src/math/s_logb.c new file mode 100644 index 0000000..be399c7 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_logb.c @@ -0,0 +1,34 @@ +/* @(#)s_logb.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * double logb(x) + * IEEE 754 logb. Included to pass IEEE test suite. Not recommend. + * Use ilogb instead. + */ + +#include <math.h> +#include "math_private.h" + +double +logb(double x) +{ + int32_t lx,ix; + EXTRACT_WORDS(ix,lx,x); + ix &= 0x7fffffff; /* high |x| */ + if((ix|lx)==0) return -1.0/fabs(x); + if(ix>=0x7ff00000) return x*x; + if((ix>>=20)==0) /* IEEE 754 logb */ + return -1022.0; + else + return (double) (ix-1023); +} diff --git a/05/musl-0.6.0/src/math/s_logbf.c b/05/musl-0.6.0/src/math/s_logbf.c new file mode 100644 index 0000000..747664d --- /dev/null +++ b/05/musl-0.6.0/src/math/s_logbf.c @@ -0,0 +1,31 @@ +/* s_logbf.c -- float version of s_logb.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +float +logbf(float x) +{ + int32_t ix; + GET_FLOAT_WORD(ix,x); + ix &= 0x7fffffff; /* high |x| */ + if(ix==0) return (float)-1.0/fabsf(x); + if(ix>=0x7f800000) return x*x; + if((ix>>=23)==0) /* IEEE 754 logb */ + return -126.0; + else + return (float) (ix-127); +} diff --git a/05/musl-0.6.0/src/math/s_lrint.c b/05/musl-0.6.0/src/math/s_lrint.c new file mode 100644 index 0000000..da8e198 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_lrint.c @@ -0,0 +1,8 @@ +#include <math.h> + +// FIXME: incorrect exception behavior + +long lrint(double x) +{ + return rint(x); +} diff --git a/05/musl-0.6.0/src/math/s_lrintf.c b/05/musl-0.6.0/src/math/s_lrintf.c new file mode 100644 index 0000000..d0b469b --- /dev/null +++ b/05/musl-0.6.0/src/math/s_lrintf.c @@ -0,0 +1,8 @@ +#include <math.h> + +// FIXME: incorrect exception behavior + +long lrintf(float x) +{ + return rintf(x); +} diff --git a/05/musl-0.6.0/src/math/s_modf.c b/05/musl-0.6.0/src/math/s_modf.c new file mode 100644 index 0000000..a5528d6 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_modf.c @@ -0,0 +1,71 @@ +/* @(#)s_modf.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * modf(double x, double *iptr) + * return fraction part of x, and return x's integral part in *iptr. + * Method: + * Bit twiddling. + * + * Exception: + * No exception. + */ + +#include <math.h> +#include "math_private.h" + +static const double one = 1.0; + +double +modf(double x, double *iptr) +{ + int32_t i0,i1,j0; + uint32_t i; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; /* exponent of x */ + if(j0<20) { /* integer part in high x */ + if(j0<0) { /* |x|<1 */ + INSERT_WORDS(*iptr,i0&0x80000000,0); /* *iptr = +-0 */ + return x; + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) { /* x is integral */ + uint32_t high; + *iptr = x; + GET_HIGH_WORD(high,x); + INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */ + return x; + } else { + INSERT_WORDS(*iptr,i0&(~i),0); + return x - *iptr; + } + } + } else if (j0>51) { /* no fraction part */ + uint32_t high; + *iptr = x*one; + GET_HIGH_WORD(high,x); + INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */ + return x; + } else { /* fraction part in low x */ + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) { /* x is integral */ + uint32_t high; + *iptr = x; + GET_HIGH_WORD(high,x); + INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */ + return x; + } else { + INSERT_WORDS(*iptr,i0,i1&(~i)); + return x - *iptr; + } + } +} diff --git a/05/musl-0.6.0/src/math/s_modff.c b/05/musl-0.6.0/src/math/s_modff.c new file mode 100644 index 0000000..de4dfd2 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_modff.c @@ -0,0 +1,52 @@ +/* s_modff.c -- float version of s_modf.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one = 1.0; + +float +modff(float x, float *iptr) +{ + int32_t i0,j0; + uint32_t i; + GET_FLOAT_WORD(i0,x); + j0 = ((i0>>23)&0xff)-0x7f; /* exponent of x */ + if(j0<23) { /* integer part in x */ + if(j0<0) { /* |x|<1 */ + SET_FLOAT_WORD(*iptr,i0&0x80000000); /* *iptr = +-0 */ + return x; + } else { + i = (0x007fffff)>>j0; + if((i0&i)==0) { /* x is integral */ + uint32_t ix; + *iptr = x; + GET_FLOAT_WORD(ix,x); + SET_FLOAT_WORD(x,ix&0x80000000); /* return +-0 */ + return x; + } else { + SET_FLOAT_WORD(*iptr,i0&(~i)); + return x - *iptr; + } + } + } else { /* no fraction part */ + uint32_t ix; + *iptr = x*one; + GET_FLOAT_WORD(ix,x); + SET_FLOAT_WORD(x,ix&0x80000000); /* return +-0 */ + return x; + } +} diff --git a/05/musl-0.6.0/src/math/s_nextafter.c b/05/musl-0.6.0/src/math/s_nextafter.c new file mode 100644 index 0000000..46d298e --- /dev/null +++ b/05/musl-0.6.0/src/math/s_nextafter.c @@ -0,0 +1,72 @@ +/* @(#)s_nextafter.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* IEEE functions + * nextafter(x,y) + * return the next machine floating-point number of x in the + * direction toward y. + * Special cases: + */ + +#include <math.h> +#include "math_private.h" + +double +nextafter(double x, double y) +{ + volatile double t; + int32_t hx,hy,ix,iy; + uint32_t lx,ly; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + ix = hx&0x7fffffff; /* |x| */ + iy = hy&0x7fffffff; /* |y| */ + + if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */ + ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */ + return x+y; + if(x==y) return y; /* x=y, return y */ + if((ix|lx)==0) { /* x == 0 */ + INSERT_WORDS(x,hy&0x80000000,1); /* return +-minsubnormal */ + t = x*x; + if(t==x) return t; else return x; /* raise underflow flag */ + } + if(hx>=0) { /* x > 0 */ + if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */ + if(lx==0) hx -= 1; + lx -= 1; + } else { /* x < y, x += ulp */ + lx += 1; + if(lx==0) hx += 1; + } + } else { /* x < 0 */ + if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */ + if(lx==0) hx -= 1; + lx -= 1; + } else { /* x > y, x += ulp */ + lx += 1; + if(lx==0) hx += 1; + } + } + hy = hx&0x7ff00000; + if(hy>=0x7ff00000) return x+x; /* overflow */ + if(hy<0x00100000) { /* underflow */ + t = x*x; + if(t!=x) { /* raise underflow flag */ + INSERT_WORDS(y,hx,lx); + return y; + } + } + INSERT_WORDS(x,hx,lx); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_nextafterf.c b/05/musl-0.6.0/src/math/s_nextafterf.c new file mode 100644 index 0000000..7ce0883 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_nextafterf.c @@ -0,0 +1,63 @@ +/* s_nextafterf.c -- float version of s_nextafter.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +float +nextafterf(float x, float y) +{ + volatile float t; + int32_t hx,hy,ix,iy; + + GET_FLOAT_WORD(hx,x); + GET_FLOAT_WORD(hy,y); + ix = hx&0x7fffffff; /* |x| */ + iy = hy&0x7fffffff; /* |y| */ + + if((ix>0x7f800000) || /* x is nan */ + (iy>0x7f800000)) /* y is nan */ + return x+y; + if(x==y) return y; /* x=y, return y */ + if(ix==0) { /* x == 0 */ + SET_FLOAT_WORD(x,(hy&0x80000000)|1);/* return +-minsubnormal */ + t = x*x; + if(t==x) return t; else return x; /* raise underflow flag */ + } + if(hx>=0) { /* x > 0 */ + if(hx>hy) { /* x > y, x -= ulp */ + hx -= 1; + } else { /* x < y, x += ulp */ + hx += 1; + } + } else { /* x < 0 */ + if(hy>=0||hx>hy){ /* x < y, x -= ulp */ + hx -= 1; + } else { /* x > y, x += ulp */ + hx += 1; + } + } + hy = hx&0x7f800000; + if(hy>=0x7f800000) return x+x; /* overflow */ + if(hy<0x00800000) { /* underflow */ + t = x*x; + if(t!=x) { /* raise underflow flag */ + SET_FLOAT_WORD(y,hx); + return y; + } + } + SET_FLOAT_WORD(x,hx); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_remquo.c b/05/musl-0.6.0/src/math/s_remquo.c new file mode 100644 index 0000000..1a2992d --- /dev/null +++ b/05/musl-0.6.0/src/math/s_remquo.c @@ -0,0 +1,149 @@ +/* @(#)e_fmod.c 1.3 95/01/18 */ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const double Zero[] = {0.0, -0.0,}; + +/* + * Return the IEEE remainder and set *quo to the last n bits of the + * quotient, rounded to the nearest integer. We choose n=31 because + * we wind up computing all the integer bits of the quotient anyway as + * a side-effect of computing the remainder by the shift and subtract + * method. In practice, this is far more bits than are needed to use + * remquo in reduction algorithms. + */ +double +remquo(double x, double y, int *quo) +{ + int32_t n,hx,hy,hz,ix,iy,sx,i; + uint32_t lx,ly,lz,q,sxy; + + EXTRACT_WORDS(hx,lx,x); + EXTRACT_WORDS(hy,ly,y); + sxy = (hx ^ hy) & 0x80000000; + sx = hx&0x80000000; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffff; /* |y| */ + + /* purge off exception values */ + if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ + ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ + return (x*y)/(x*y); + if(hx<=hy) { + if((hx<hy)||(lx<ly)) { + q = 0; + goto fixup; /* |x|<|y| return x or x-y */ + } + if(lx==ly) { + *quo = 1; + return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ + } + } + + /* determine ix = ilogb(x) */ + if(hx<0x00100000) { /* subnormal x */ + if(hx==0) { + for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; + } else { + for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; + } + } else ix = (hx>>20)-1023; + + /* determine iy = ilogb(y) */ + if(hy<0x00100000) { /* subnormal y */ + if(hy==0) { + for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; + } else { + for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; + } + } else iy = (hy>>20)-1023; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -1022) + hx = 0x00100000|(0x000fffff&hx); + else { /* subnormal x, shift x to normal */ + n = -1022-ix; + if(n<=31) { + hx = (hx<<n)|(lx>>(32-n)); + lx <<= n; + } else { + hx = lx<<(n-32); + lx = 0; + } + } + if(iy >= -1022) + hy = 0x00100000|(0x000fffff&hy); + else { /* subnormal y, shift y to normal */ + n = -1022-iy; + if(n<=31) { + hy = (hy<<n)|(ly>>(32-n)); + ly <<= n; + } else { + hy = ly<<(n-32); + ly = 0; + } + } + + /* fix point fmod */ + n = ix - iy; + q = 0; + while(n--) { + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} + else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;} + q <<= 1; + } + hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; + if(hz>=0) {hx=hz;lx=lz;q++;} + + /* convert back to floating value and restore the sign */ + if((hx|lx)==0) { /* return sign(x)*0 */ + *quo = (sxy ? -q : q); + return Zero[(uint32_t)sx>>31]; + } + while(hx<0x00100000) { /* normalize x */ + hx = hx+hx+(lx>>31); lx = lx+lx; + iy -= 1; + } + if(iy>= -1022) { /* normalize output */ + hx = ((hx-0x00100000)|((iy+1023)<<20)); + } else { /* subnormal output */ + n = -1022 - iy; + if(n<=20) { + lx = (lx>>n)|((uint32_t)hx<<(32-n)); + hx >>= n; + } else if (n<=31) { + lx = (hx<<(32-n))|(lx>>n); hx = sx; + } else { + lx = hx>>(n-32); hx = sx; + } + } +fixup: + INSERT_WORDS(x,hx,lx); + y = fabs(y); + if (y < 0x1p-1021) { + if (x+x>y || (x+x==y && (q & 1))) { + q++; + x-=y; + } + } else if (x>0.5*y || (x==0.5*y && (q & 1))) { + q++; + x-=y; + } + GET_HIGH_WORD(hx,x); + SET_HIGH_WORD(x,hx^sx); + q &= 0x7fffffff; + *quo = (sxy ? -q : q); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_remquof.c b/05/musl-0.6.0/src/math/s_remquof.c new file mode 100644 index 0000000..be2a561 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_remquof.c @@ -0,0 +1,118 @@ +/* @(#)e_fmod.c 1.3 95/01/18 */ +/*- + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float Zero[] = {0.0, -0.0,}; + +/* + * Return the IEEE remainder and set *quo to the last n bits of the + * quotient, rounded to the nearest integer. We choose n=31 because + * we wind up computing all the integer bits of the quotient anyway as + * a side-effect of computing the remainder by the shift and subtract + * method. In practice, this is far more bits than are needed to use + * remquo in reduction algorithms. + */ +float +remquof(float x, float y, int *quo) +{ + int32_t n,hx,hy,hz,ix,iy,sx,i; + uint32_t q,sxy; + + GET_FLOAT_WORD(hx,x); + GET_FLOAT_WORD(hy,y); + sxy = (hx ^ hy) & 0x80000000; + sx = hx&0x80000000; /* sign of x */ + hx ^=sx; /* |x| */ + hy &= 0x7fffffff; /* |y| */ + + /* purge off exception values */ + if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */ + return (x*y)/(x*y); + if(hx<hy) { + q = 0; + goto fixup; /* |x|<|y| return x or x-y */ + } else if(hx==hy) { + *quo = 1; + return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/ + } + + /* determine ix = ilogb(x) */ + if(hx<0x00800000) { /* subnormal x */ + for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; + } else ix = (hx>>23)-127; + + /* determine iy = ilogb(y) */ + if(hy<0x00800000) { /* subnormal y */ + for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1; + } else iy = (hy>>23)-127; + + /* set up {hx,lx}, {hy,ly} and align y to x */ + if(ix >= -126) + hx = 0x00800000|(0x007fffff&hx); + else { /* subnormal x, shift x to normal */ + n = -126-ix; + hx <<= n; + } + if(iy >= -126) + hy = 0x00800000|(0x007fffff&hy); + else { /* subnormal y, shift y to normal */ + n = -126-iy; + hy <<= n; + } + + /* fix point fmod */ + n = ix - iy; + q = 0; + while(n--) { + hz=hx-hy; + if(hz<0) hx = hx << 1; + else {hx = hz << 1; q++;} + q <<= 1; + } + hz=hx-hy; + if(hz>=0) {hx=hz;q++;} + + /* convert back to floating value and restore the sign */ + if(hx==0) { /* return sign(x)*0 */ + *quo = (sxy ? -q : q); + return Zero[(uint32_t)sx>>31]; + } + while(hx<0x00800000) { /* normalize x */ + hx <<= 1; + iy -= 1; + } + if(iy>= -126) { /* normalize output */ + hx = ((hx-0x00800000)|((iy+127)<<23)); + } else { /* subnormal output */ + n = -126 - iy; + hx >>= n; + } +fixup: + SET_FLOAT_WORD(x,hx); + y = fabsf(y); + if (y < 0x1p-125f) { + if (x+x>y || (x+x==y && (q & 1))) { + q++; + x-=y; + } + } else if (x>0.5f*y || (x==0.5f*y && (q & 1))) { + q++; + x-=y; + } + GET_FLOAT_WORD(hx,x); + SET_FLOAT_WORD(x,hx^sx); + q &= 0x7fffffff; + *quo = (sxy ? -q : q); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_rint.c b/05/musl-0.6.0/src/math/s_rint.c new file mode 100644 index 0000000..c80e01e --- /dev/null +++ b/05/musl-0.6.0/src/math/s_rint.c @@ -0,0 +1,80 @@ +/* @(#)s_rint.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * rint(x) + * Return x rounded to integral value according to the prevailing + * rounding mode. + * Method: + * Using floating addition. + * Exception: + * Inexact flag raised if x not equal to rint(x). + */ + +#include <math.h> +#include "math_private.h" + +/* + * TWO23 is long double instead of double to avoid a bug in gcc. Without + * this, gcc thinks that TWO23[sx]+x and w-TWO23[sx] already have double + * precision and doesn't clip them to double precision when they are + * assigned and returned. + */ +static const /*long*/ double +TWO52[2]={ + 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ + -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */ +}; + +double +rint(double x) +{ + int32_t i0,j0,sx; + uint32_t i,i1; + double w,t; + EXTRACT_WORDS(i0,i1,x); + sx = (i0>>31)&1; + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { + if(((i0&0x7fffffff)|i1)==0) return x; + i1 |= (i0&0x0fffff); + i0 &= 0xfffe0000; + i0 |= ((i1|-i1)>>12)&0x80000; + SET_HIGH_WORD(x,i0); + w = TWO52[sx]+x; + t = w-TWO52[sx]; + GET_HIGH_WORD(i0,t); + SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31)); + return t; + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + i>>=1; + if(((i0&i)|i1)!=0) { + if(j0==19) i1 = 0x40000000; else + i0 = (i0&(~i))|((0x20000)>>j0); + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + i>>=1; + if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20)); + } + INSERT_WORDS(x,i0,i1); + w = TWO52[sx]+x; + return w-TWO52[sx]; +} diff --git a/05/musl-0.6.0/src/math/s_rintf.c b/05/musl-0.6.0/src/math/s_rintf.c new file mode 100644 index 0000000..c441870 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_rintf.c @@ -0,0 +1,45 @@ +/* s_rintf.c -- float version of s_rint.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +TWO23[2]={ + 8.3886080000e+06, /* 0x4b000000 */ + -8.3886080000e+06, /* 0xcb000000 */ +}; + +float +rintf(float x) +{ + int32_t i0,j0,sx; + volatile float w,t; /* volatile works around gcc bug */ + GET_FLOAT_WORD(i0,x); + sx = (i0>>31)&1; + j0 = ((i0>>23)&0xff)-0x7f; + if(j0<23) { + if(j0<0) { + if((i0&0x7fffffff)==0) return x; + w = TWO23[sx]+x; + t = w-TWO23[sx]; + return t; + } + w = TWO23[sx]+x; + return w-TWO23[sx]; + } + if(j0==0x80) return x+x; /* inf or NaN */ + else return x; /* x is integral */ +} diff --git a/05/musl-0.6.0/src/math/s_round.c b/05/musl-0.6.0/src/math/s_round.c new file mode 100644 index 0000000..d5bea7a --- /dev/null +++ b/05/musl-0.6.0/src/math/s_round.c @@ -0,0 +1,48 @@ +/*- + * Copyright (c) 2003, Steven G. Kargl + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice unmodified, this list of conditions, and the following + * disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include <math.h> + +double +round(double x) +{ + double t; + + if (!isfinite(x)) + return (x); + + if (x >= 0.0) { + t = ceil(x); + if (t - x > 0.5) + t -= 1.0; + return (t); + } else { + t = ceil(-x); + if (t + x > 0.5) + t -= 1.0; + return (-t); + } +} diff --git a/05/musl-0.6.0/src/math/s_roundf.c b/05/musl-0.6.0/src/math/s_roundf.c new file mode 100644 index 0000000..c4fc3e1 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_roundf.c @@ -0,0 +1,48 @@ +/*- + * Copyright (c) 2003, Steven G. Kargl + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice unmodified, this list of conditions, and the following + * disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include <math.h> + +float +roundf(float x) +{ + float t; + + if (!isfinite(x)) + return (x); + + if (x >= 0.0) { + t = ceilf(x); + if (t - x > 0.5) + t -= 1.0; + return (t); + } else { + t = ceilf(-x); + if (t + x > 0.5) + t -= 1.0; + return (-t); + } +} diff --git a/05/musl-0.6.0/src/math/s_scalbln.c b/05/musl-0.6.0/src/math/s_scalbln.c new file mode 100644 index 0000000..12b9391 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_scalbln.c @@ -0,0 +1,61 @@ +/* @(#)s_scalbn.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * scalbn (double x, int n) + * scalbn(x,n) returns x* 2**n computed by exponent + * manipulation rather than by actually performing an + * exponentiation or a multiplication. + */ + +#include <math.h> +#include "math_private.h" + +static const double +two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ +twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ +huge = 1.0e+300, +tiny = 1.0e-300; + +double +scalbln (double x, long n) +{ + int32_t k,hx,lx; + EXTRACT_WORDS(hx,lx,x); + k = (hx&0x7ff00000)>>20; /* extract exponent */ + if (k==0) { /* 0 or subnormal x */ + if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ + x *= two54; + GET_HIGH_WORD(hx,x); + k = ((hx&0x7ff00000)>>20) - 54; + if (n< -50000) return tiny*x; /*underflow*/ + } + if (k==0x7ff) return x+x; /* NaN or Inf */ + k = k+n; + if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */ + if (k > 0) /* normal result */ + {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;} + if (k <= -54) { + if (n > 50000) /* in case integer overflow in n+k */ + return huge*copysign(huge,x); /*overflow*/ + else return tiny*copysign(tiny,x); /*underflow*/ + } + k += 54; /* subnormal result */ + SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); + return x*twom54; +} + +double +scalbn (double x, int n) +{ + return scalbln(x, n); +} diff --git a/05/musl-0.6.0/src/math/s_scalblnf.c b/05/musl-0.6.0/src/math/s_scalblnf.c new file mode 100644 index 0000000..21e7641 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_scalblnf.c @@ -0,0 +1,57 @@ +/* s_scalbnf.c -- float version of s_scalbn.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float +two25 = 3.355443200e+07, /* 0x4c000000 */ +twom25 = 2.9802322388e-08, /* 0x33000000 */ +huge = 1.0e+30, +tiny = 1.0e-30; + +float +scalblnf (float x, long n) +{ + int32_t k,ix; + GET_FLOAT_WORD(ix,x); + k = (ix&0x7f800000)>>23; /* extract exponent */ + if (k==0) { /* 0 or subnormal x */ + if ((ix&0x7fffffff)==0) return x; /* +-0 */ + x *= two25; + GET_FLOAT_WORD(ix,x); + k = ((ix&0x7f800000)>>23) - 25; + if (n< -50000) return tiny*x; /*underflow*/ + } + if (k==0xff) return x+x; /* NaN or Inf */ + k = k+n; + if (k > 0xfe) return huge*copysignf(huge,x); /* overflow */ + if (k > 0) /* normal result */ + {SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;} + if (k <= -25) { + if (n > 50000) /* in case integer overflow in n+k */ + return huge*copysignf(huge,x); /*overflow*/ + else return tiny*copysignf(tiny,x); /*underflow*/ + } + k += 25; /* subnormal result */ + SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); + return x*twom25; +} + +float +scalbnf (float x, int n) +{ + return scalblnf(x, n); +} diff --git a/05/musl-0.6.0/src/math/s_sin.c b/05/musl-0.6.0/src/math/s_sin.c new file mode 100644 index 0000000..2a2774e --- /dev/null +++ b/05/musl-0.6.0/src/math/s_sin.c @@ -0,0 +1,74 @@ +/* @(#)s_sin.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* sin(x) + * Return sine function of x. + * + * kernel function: + * __kernel_sin ... sine function on [-pi/4,pi/4] + * __kernel_cos ... cose function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include <math.h> +#include "math_private.h" + +double +sin(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); + + /* sin(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + switch(n&3) { + case 0: return __kernel_sin(y[0],y[1],1); + case 1: return __kernel_cos(y[0],y[1]); + case 2: return -__kernel_sin(y[0],y[1],1); + default: + return -__kernel_cos(y[0],y[1]); + } + } +} diff --git a/05/musl-0.6.0/src/math/s_sinf.c b/05/musl-0.6.0/src/math/s_sinf.c new file mode 100644 index 0000000..d2b8e80 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_sinf.c @@ -0,0 +1,45 @@ +/* s_sinf.c -- float version of s_sin.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +float +sinf(float x) +{ + float y[2],z=0.0; + int32_t n, ix; + + GET_FLOAT_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0); + + /* sin(Inf or NaN) is NaN */ + else if (ix>=0x7f800000) return x-x; + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2f(x,y); + switch(n&3) { + case 0: return __kernel_sinf(y[0],y[1],1); + case 1: return __kernel_cosf(y[0],y[1]); + case 2: return -__kernel_sinf(y[0],y[1],1); + default: + return -__kernel_cosf(y[0],y[1]); + } + } +} diff --git a/05/musl-0.6.0/src/math/s_tan.c b/05/musl-0.6.0/src/math/s_tan.c new file mode 100644 index 0000000..3333cb3 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_tan.c @@ -0,0 +1,68 @@ +/* @(#)s_tan.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* tan(x) + * Return tangent function of x. + * + * kernel function: + * __kernel_tan ... tangent function on [-pi/4,pi/4] + * __ieee754_rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include <math.h> +#include "math_private.h" + +double +tan(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + /* High word of x. */ + GET_HIGH_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); + + /* tan(Inf or NaN) is NaN */ + else if (ix>=0x7ff00000) return x-x; /* NaN */ + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2(x,y); + return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even + -1 -- n odd */ + } +} diff --git a/05/musl-0.6.0/src/math/s_tanf.c b/05/musl-0.6.0/src/math/s_tanf.c new file mode 100644 index 0000000..660dd9c --- /dev/null +++ b/05/musl-0.6.0/src/math/s_tanf.c @@ -0,0 +1,40 @@ +/* s_tanf.c -- float version of s_tan.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +float +tanf(float x) +{ + float y[2],z=0.0; + int32_t n, ix; + + GET_FLOAT_WORD(ix,x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1); + + /* tan(Inf or NaN) is NaN */ + else if (ix>=0x7f800000) return x-x; /* NaN */ + + /* argument reduction needed */ + else { + n = __ieee754_rem_pio2f(x,y); + return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even + -1 -- n odd */ + } +} diff --git a/05/musl-0.6.0/src/math/s_tanh.c b/05/musl-0.6.0/src/math/s_tanh.c new file mode 100644 index 0000000..78b8e84 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_tanh.c @@ -0,0 +1,74 @@ +/* @(#)s_tanh.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* Tanh(x) + * Return the Hyperbolic Tangent of x + * + * Method : + * x -x + * e - e + * 0. tanh(x) is defined to be ----------- + * x -x + * e + e + * 1. reduce x to non-negative by tanh(-x) = -tanh(x). + * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) + * -t + * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) + * t + 2 + * 2 + * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) + * t + 2 + * 22.0 < x <= INF : tanh(x) := 1. + * + * Special cases: + * tanh(NaN) is NaN; + * only tanh(0)=0 is exact for finite argument. + */ + +#include <math.h> +#include "math_private.h" + +static const double one=1.0, two=2.0, tiny = 1.0e-300; + +double +tanh(double x) +{ + double t,z; + int32_t jx,ix; + + /* High word of |x|. */ + GET_HIGH_WORD(jx,x); + ix = jx&0x7fffffff; + + /* x is INF or NaN */ + if(ix>=0x7ff00000) { + if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ + else return one/x-one; /* tanh(NaN) = NaN */ + } + + /* |x| < 22 */ + if (ix < 0x40360000) { /* |x|<22 */ + if (ix<0x3c800000) /* |x|<2**-55 */ + return x*(one+x); /* tanh(small) = small */ + if (ix>=0x3ff00000) { /* |x|>=1 */ + t = expm1(two*fabs(x)); + z = one - two/(t+two); + } else { + t = expm1(-two*fabs(x)); + z= -t/(t+two); + } + /* |x| > 22, return +-1 */ + } else { + z = one - tiny; /* raised inexact flag */ + } + return (jx>=0)? z: -z; +} diff --git a/05/musl-0.6.0/src/math/s_tanhf.c b/05/musl-0.6.0/src/math/s_tanhf.c new file mode 100644 index 0000000..a082040 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_tanhf.c @@ -0,0 +1,52 @@ +/* s_tanhf.c -- float version of s_tanh.c. + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. + */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#include <math.h> +#include "math_private.h" + +static const float one=1.0, two=2.0, tiny = 1.0e-30; + +float +tanhf(float x) +{ + float t,z; + int32_t jx,ix; + + GET_FLOAT_WORD(jx,x); + ix = jx&0x7fffffff; + + /* x is INF or NaN */ + if(ix>=0x7f800000) { + if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ + else return one/x-one; /* tanh(NaN) = NaN */ + } + + /* |x| < 22 */ + if (ix < 0x41b00000) { /* |x|<22 */ + if (ix<0x24000000) /* |x|<2**-55 */ + return x*(one+x); /* tanh(small) = small */ + if (ix>=0x3f800000) { /* |x|>=1 */ + t = expm1f(two*fabsf(x)); + z = one - two/(t+two); + } else { + t = expm1f(-two*fabsf(x)); + z= -t/(t+two); + } + /* |x| > 22, return +-1 */ + } else { + z = one - tiny; /* raised inexact flag */ + } + return (jx>=0)? z: -z; +} diff --git a/05/musl-0.6.0/src/math/s_trunc.c b/05/musl-0.6.0/src/math/s_trunc.c new file mode 100644 index 0000000..02c6556 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_trunc.c @@ -0,0 +1,58 @@ +/* @(#)s_floor.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * trunc(x) + * Return x rounded toward 0 to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to trunc(x). + */ + +#include <math.h> +#include "math_private.h" + +static const double huge = 1.0e300; + +double +trunc(double x) +{ + int32_t i0,i1,j0; + uint32_t i,j; + EXTRACT_WORDS(i0,i1,x); + j0 = ((i0>>20)&0x7ff)-0x3ff; + if(j0<20) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0) {/* |x|<1, so return 0*sign(x) */ + i0 &= 0x80000000U; + i1 = 0; + } + } else { + i = (0x000fffff)>>j0; + if(((i0&i)|i1)==0) return x; /* x is integral */ + if(huge+x>0.0) { /* raise inexact flag */ + i0 &= (~i); i1=0; + } + } + } else if (j0>51) { + if(j0==0x400) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } else { + i = ((uint32_t)(0xffffffff))>>(j0-20); + if((i1&i)==0) return x; /* x is integral */ + if(huge+x>0.0) /* raise inexact flag */ + i1 &= (~i); + } + INSERT_WORDS(x,i0,i1); + return x; +} diff --git a/05/musl-0.6.0/src/math/s_truncf.c b/05/musl-0.6.0/src/math/s_truncf.c new file mode 100644 index 0000000..c253e62 --- /dev/null +++ b/05/musl-0.6.0/src/math/s_truncf.c @@ -0,0 +1,50 @@ +/* @(#)s_floor.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* + * truncf(x) + * Return x rounded toward 0 to integral value + * Method: + * Bit twiddling. + * Exception: + * Inexact flag raised if x not equal to truncf(x). + */ + +#include <math.h> +#include "math_private.h" + +static const float huge = 1.0e30F; + +float +truncf(float x) +{ + int32_t i0,j0; + uint32_t i; + GET_FLOAT_WORD(i0,x); + j0 = ((i0>>23)&0xff)-0x7f; + if(j0<23) { + if(j0<0) { /* raise inexact if x != 0 */ + if(huge+x>0.0F) /* |x|<1, so return 0*sign(x) */ + i0 &= 0x80000000; + } else { + i = (0x007fffff)>>j0; + if((i0&i)==0) return x; /* x is integral */ + if(huge+x>0.0F) /* raise inexact flag */ + i0 &= (~i); + } + } else { + if(j0==0x80) return x+x; /* inf or NaN */ + else return x; /* x is integral */ + } + SET_FLOAT_WORD(x,i0); + return x; +} |