summaryrefslogtreecommitdiff
path: root/05/musl-0.6.0/src/math
diff options
context:
space:
mode:
authorpommicket <pommicket@gmail.com>2022-02-20 13:18:21 -0800
committerpommicket <pommicket@gmail.com>2022-02-20 13:18:21 -0800
commit9bc8a11afeed3569736b89754012e3ca22ee10f6 (patch)
tree5f0ec0d5c05f879b1ee86adfa654ed3ef2178d5f /05/musl-0.6.0/src/math
parent0f97a589b800bdb71dda05984192f0f66a52edaa (diff)
conclusion
Diffstat (limited to '05/musl-0.6.0/src/math')
-rw-r--r--05/musl-0.6.0/src/math/__fpclassify.c14
-rw-r--r--05/musl-0.6.0/src/math/__fpclassifyf.c14
-rw-r--r--05/musl-0.6.0/src/math/__fpclassifyl.c16
-rw-r--r--05/musl-0.6.0/src/math/__x86_64/e_sqrt.s3
-rw-r--r--05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s3
-rw-r--r--05/musl-0.6.0/src/math/e_acos.c99
-rw-r--r--05/musl-0.6.0/src/math/e_acosf.c77
-rw-r--r--05/musl-0.6.0/src/math/e_acosh.c59
-rw-r--r--05/musl-0.6.0/src/math/e_acoshf.c45
-rw-r--r--05/musl-0.6.0/src/math/e_asin.c109
-rw-r--r--05/musl-0.6.0/src/math/e_asinf.c80
-rw-r--r--05/musl-0.6.0/src/math/e_atan2.c120
-rw-r--r--05/musl-0.6.0/src/math/e_atan2f.c93
-rw-r--r--05/musl-0.6.0/src/math/e_atanh.c59
-rw-r--r--05/musl-0.6.0/src/math/e_atanhf.c42
-rw-r--r--05/musl-0.6.0/src/math/e_cosh.c82
-rw-r--r--05/musl-0.6.0/src/math/e_coshf.c59
-rw-r--r--05/musl-0.6.0/src/math/e_exp.c155
-rw-r--r--05/musl-0.6.0/src/math/e_expf.c91
-rw-r--r--05/musl-0.6.0/src/math/e_fmod.c129
-rw-r--r--05/musl-0.6.0/src/math/e_fmodf.c101
-rw-r--r--05/musl-0.6.0/src/math/e_hypot.c121
-rw-r--r--05/musl-0.6.0/src/math/e_hypotf.c79
-rw-r--r--05/musl-0.6.0/src/math/e_log.c131
-rw-r--r--05/musl-0.6.0/src/math/e_log10.c83
-rw-r--r--05/musl-0.6.0/src/math/e_log10f.c51
-rw-r--r--05/musl-0.6.0/src/math/e_logf.c81
-rw-r--r--05/musl-0.6.0/src/math/e_pow.c300
-rw-r--r--05/musl-0.6.0/src/math/e_powf.c243
-rw-r--r--05/musl-0.6.0/src/math/e_rem_pio2.c163
-rw-r--r--05/musl-0.6.0/src/math/e_rem_pio2f.c175
-rw-r--r--05/musl-0.6.0/src/math/e_remainder.c69
-rw-r--r--05/musl-0.6.0/src/math/e_remainderf.c61
-rw-r--r--05/musl-0.6.0/src/math/e_scalb.c35
-rw-r--r--05/musl-0.6.0/src/math/e_scalbf.c31
-rw-r--r--05/musl-0.6.0/src/math/e_sinh.c75
-rw-r--r--05/musl-0.6.0/src/math/e_sinhf.c56
-rw-r--r--05/musl-0.6.0/src/math/e_sqrt.c442
-rw-r--r--05/musl-0.6.0/src/math/e_sqrtf.c85
-rw-r--r--05/musl-0.6.0/src/math/i386/e_exp.s36
-rw-r--r--05/musl-0.6.0/src/math/i386/e_expf.s1
-rw-r--r--05/musl-0.6.0/src/math/i386/e_log.s6
-rw-r--r--05/musl-0.6.0/src/math/i386/e_log10.s6
-rw-r--r--05/musl-0.6.0/src/math/i386/e_log10f.s6
-rw-r--r--05/musl-0.6.0/src/math/i386/e_logf.s6
-rw-r--r--05/musl-0.6.0/src/math/i386/e_remainder.s16
-rw-r--r--05/musl-0.6.0/src/math/i386/e_remainderf.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/e_sqrt.s4
-rw-r--r--05/musl-0.6.0/src/math/i386/e_sqrtf.s4
-rw-r--r--05/musl-0.6.0/src/math/i386/s_ceil.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/s_ceilf.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/s_fabs.s5
-rw-r--r--05/musl-0.6.0/src/math/i386/s_fabsf.s5
-rw-r--r--05/musl-0.6.0/src/math/i386/s_floor.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/s_floorf.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/s_ldexp.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/s_ldexpf.s0
-rw-r--r--05/musl-0.6.0/src/math/i386/s_rint.s5
-rw-r--r--05/musl-0.6.0/src/math/i386/s_rintf.s5
-rw-r--r--05/musl-0.6.0/src/math/i386/s_scalbln.s11
-rw-r--r--05/musl-0.6.0/src/math/i386/s_scalblnf.s11
-rw-r--r--05/musl-0.6.0/src/math/i386/s_trunc.s36
-rw-r--r--05/musl-0.6.0/src/math/i386/s_truncf.s0
-rw-r--r--05/musl-0.6.0/src/math/k_cos.c85
-rw-r--r--05/musl-0.6.0/src/math/k_cosf.c52
-rw-r--r--05/musl-0.6.0/src/math/k_rem_pio2.c300
-rw-r--r--05/musl-0.6.0/src/math/k_rem_pio2f.c192
-rw-r--r--05/musl-0.6.0/src/math/k_sin.c68
-rw-r--r--05/musl-0.6.0/src/math/k_sinf.c42
-rw-r--r--05/musl-0.6.0/src/math/k_tan.c149
-rw-r--r--05/musl-0.6.0/src/math/k_tanf.c105
-rw-r--r--05/musl-0.6.0/src/math/math_private.h143
-rw-r--r--05/musl-0.6.0/src/math/s_asinh.c53
-rw-r--r--05/musl-0.6.0/src/math/s_asinhf.c45
-rw-r--r--05/musl-0.6.0/src/math/s_atan.c115
-rw-r--r--05/musl-0.6.0/src/math/s_atanf.c95
-rw-r--r--05/musl-0.6.0/src/math/s_cbrt.c77
-rw-r--r--05/musl-0.6.0/src/math/s_cbrtf.c67
-rw-r--r--05/musl-0.6.0/src/math/s_ceil.c68
-rw-r--r--05/musl-0.6.0/src/math/s_ceilf.c49
-rw-r--r--05/musl-0.6.0/src/math/s_copysign.c30
-rw-r--r--05/musl-0.6.0/src/math/s_copysignf.c33
-rw-r--r--05/musl-0.6.0/src/math/s_cos.c74
-rw-r--r--05/musl-0.6.0/src/math/s_cosf.c47
-rw-r--r--05/musl-0.6.0/src/math/s_erf.c298
-rw-r--r--05/musl-0.6.0/src/math/s_erff.c207
-rw-r--r--05/musl-0.6.0/src/math/s_expm1.c217
-rw-r--r--05/musl-0.6.0/src/math/s_expm1f.c122
-rw-r--r--05/musl-0.6.0/src/math/s_fabs.c27
-rw-r--r--05/musl-0.6.0/src/math/s_fabsf.c30
-rw-r--r--05/musl-0.6.0/src/math/s_floor.c69
-rw-r--r--05/musl-0.6.0/src/math/s_floorf.c58
-rw-r--r--05/musl-0.6.0/src/math/s_ilogb.c45
-rw-r--r--05/musl-0.6.0/src/math/s_ilogbf.c37
-rw-r--r--05/musl-0.6.0/src/math/s_ldexp.c6
-rw-r--r--05/musl-0.6.0/src/math/s_ldexpf.c6
-rw-r--r--05/musl-0.6.0/src/math/s_llrint.c8
-rw-r--r--05/musl-0.6.0/src/math/s_log1p.c157
-rw-r--r--05/musl-0.6.0/src/math/s_log1pf.c96
-rw-r--r--05/musl-0.6.0/src/math/s_logb.c34
-rw-r--r--05/musl-0.6.0/src/math/s_logbf.c31
-rw-r--r--05/musl-0.6.0/src/math/s_lrint.c8
-rw-r--r--05/musl-0.6.0/src/math/s_lrintf.c8
-rw-r--r--05/musl-0.6.0/src/math/s_modf.c71
-rw-r--r--05/musl-0.6.0/src/math/s_modff.c52
-rw-r--r--05/musl-0.6.0/src/math/s_nextafter.c72
-rw-r--r--05/musl-0.6.0/src/math/s_nextafterf.c63
-rw-r--r--05/musl-0.6.0/src/math/s_remquo.c149
-rw-r--r--05/musl-0.6.0/src/math/s_remquof.c118
-rw-r--r--05/musl-0.6.0/src/math/s_rint.c80
-rw-r--r--05/musl-0.6.0/src/math/s_rintf.c45
-rw-r--r--05/musl-0.6.0/src/math/s_round.c48
-rw-r--r--05/musl-0.6.0/src/math/s_roundf.c48
-rw-r--r--05/musl-0.6.0/src/math/s_scalbln.c61
-rw-r--r--05/musl-0.6.0/src/math/s_scalblnf.c57
-rw-r--r--05/musl-0.6.0/src/math/s_sin.c74
-rw-r--r--05/musl-0.6.0/src/math/s_sinf.c45
-rw-r--r--05/musl-0.6.0/src/math/s_tan.c68
-rw-r--r--05/musl-0.6.0/src/math/s_tanf.c40
-rw-r--r--05/musl-0.6.0/src/math/s_tanh.c74
-rw-r--r--05/musl-0.6.0/src/math/s_tanhf.c52
-rw-r--r--05/musl-0.6.0/src/math/s_trunc.c58
-rw-r--r--05/musl-0.6.0/src/math/s_truncf.c50
123 files changed, 8572 insertions, 0 deletions
diff --git a/05/musl-0.6.0/src/math/__fpclassify.c b/05/musl-0.6.0/src/math/__fpclassify.c
new file mode 100644
index 0000000..1605110
--- /dev/null
+++ b/05/musl-0.6.0/src/math/__fpclassify.c
@@ -0,0 +1,14 @@
+#include <stdint.h>
+#include <math.h>
+
+int __fpclassify(double __x)
+{
+ union {
+ double __d;
+ __uint64_t __i;
+ } __y = { __x };
+ int __ee = __y.__i>>52 & 0x7ff;
+ if (!__ee) return __y.__i<<1 ? FP_SUBNORMAL : FP_ZERO;
+ if (__ee==0x7ff) return __y.__i<<12 ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
diff --git a/05/musl-0.6.0/src/math/__fpclassifyf.c b/05/musl-0.6.0/src/math/__fpclassifyf.c
new file mode 100644
index 0000000..bf59d0d
--- /dev/null
+++ b/05/musl-0.6.0/src/math/__fpclassifyf.c
@@ -0,0 +1,14 @@
+#include <stdint.h>
+#include <math.h>
+
+int __fpclassifyf(float __x)
+{
+ union {
+ float __f;
+ __uint32_t __i;
+ } __y = { __x };
+ int __ee = __y.__i>>23 & 0xff;
+ if (!__ee) return __y.__i<<1 ? FP_SUBNORMAL : FP_ZERO;
+ if (__ee==0xff) return __y.__i<<9 ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
diff --git a/05/musl-0.6.0/src/math/__fpclassifyl.c b/05/musl-0.6.0/src/math/__fpclassifyl.c
new file mode 100644
index 0000000..4f93bef
--- /dev/null
+++ b/05/musl-0.6.0/src/math/__fpclassifyl.c
@@ -0,0 +1,16 @@
+#include <stdint.h>
+#include <math.h>
+
+/* FIXME: move this to arch-specific file */
+int __fpclassifyl(long double __x)
+{
+ union {
+ long double __ld;
+ __uint16_t __hw[5];
+ __uint64_t __m;
+ } __y = { __x };
+ int __ee = __y.__hw[4]&0x7fff;
+ if (!__ee) return __y.__m ? FP_SUBNORMAL : FP_ZERO;
+ if (__ee==0x7fff) return __y.__m ? FP_NAN : FP_INFINITE;
+ return FP_NORMAL;
+}
diff --git a/05/musl-0.6.0/src/math/__x86_64/e_sqrt.s b/05/musl-0.6.0/src/math/__x86_64/e_sqrt.s
new file mode 100644
index 0000000..64de7d6
--- /dev/null
+++ b/05/musl-0.6.0/src/math/__x86_64/e_sqrt.s
@@ -0,0 +1,3 @@
+.global sqrt
+sqrt: sqrtsd %xmm0, %xmm0
+ ret
diff --git a/05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s b/05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s
new file mode 100644
index 0000000..2c77076
--- /dev/null
+++ b/05/musl-0.6.0/src/math/__x86_64/e_sqrtf.s
@@ -0,0 +1,3 @@
+.global sqrtf
+sqrtf: sqrtss %xmm0, %xmm0
+ ret
diff --git a/05/musl-0.6.0/src/math/e_acos.c b/05/musl-0.6.0/src/math/e_acos.c
new file mode 100644
index 0000000..e023639
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_acos.c
@@ -0,0 +1,99 @@
+/* @(#)e_acos.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* acos(x)
+ * Method :
+ * acos(x) = pi/2 - asin(x)
+ * acos(-x) = pi/2 + asin(x)
+ * For |x|<=0.5
+ * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
+ * For x>0.5
+ * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
+ * = 2asin(sqrt((1-x)/2))
+ * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
+ * = 2f + (2c + 2s*z*R(z))
+ * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
+ * for f so that f+c ~ sqrt(z).
+ * For x<-0.5
+ * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
+ * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ * Function needed: sqrt
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
+qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+double
+acos(double x)
+{
+ double z,p,q,r,w,s,c,df;
+ int32_t hx,ix;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x3ff00000) { /* |x| >= 1 */
+ uint32_t lx;
+ GET_LOW_WORD(lx,x);
+ if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
+ if(hx>0) return 0.0; /* acos(1) = 0 */
+ else return pi+2.0*pio2_lo; /* acos(-1)= pi */
+ }
+ return (x-x)/(x-x); /* acos(|x|>1) is NaN */
+ }
+ if(ix<0x3fe00000) { /* |x| < 0.5 */
+ if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
+ z = x*x;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ r = p/q;
+ return pio2_hi - (x - (pio2_lo-x*r));
+ } else if (hx<0) { /* x < -0.5 */
+ z = (one+x)*0.5;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ s = sqrt(z);
+ r = p/q;
+ w = r*s-pio2_lo;
+ return pi - 2.0*(s+w);
+ } else { /* x > 0.5 */
+ z = (one-x)*0.5;
+ s = sqrt(z);
+ df = s;
+ SET_LOW_WORD(df,0);
+ c = (z-df*df)/(s+df);
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ r = p/q;
+ w = r*s+c;
+ return 2.0*(df+w);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_acosf.c b/05/musl-0.6.0/src/math/e_acosf.c
new file mode 100644
index 0000000..4c59781
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_acosf.c
@@ -0,0 +1,77 @@
+/* e_acosf.c -- float version of e_acos.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0000000000e+00, /* 0x3F800000 */
+pi = 3.1415925026e+00, /* 0x40490fda */
+pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
+pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
+pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
+pS1 = -3.2556581497e-01, /* 0xbea6b090 */
+pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
+pS3 = -4.0055535734e-02, /* 0xbd241146 */
+pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
+pS5 = 3.4793309169e-05, /* 0x3811ef08 */
+qS1 = -2.4033949375e+00, /* 0xc019d139 */
+qS2 = 2.0209457874e+00, /* 0x4001572d */
+qS3 = -6.8828397989e-01, /* 0xbf303361 */
+qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
+
+float
+acosf(float x)
+{
+ float z,p,q,r,w,s,c,df;
+ int32_t hx,ix;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix==0x3f800000) { /* |x|==1 */
+ if(hx>0) return 0.0; /* acos(1) = 0 */
+ else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */
+ } else if(ix>0x3f800000) { /* |x| >= 1 */
+ return (x-x)/(x-x); /* acos(|x|>1) is NaN */
+ }
+ if(ix<0x3f000000) { /* |x| < 0.5 */
+ if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
+ z = x*x;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ r = p/q;
+ return pio2_hi - (x - (pio2_lo-x*r));
+ } else if (hx<0) { /* x < -0.5 */
+ z = (one+x)*(float)0.5;
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ s = sqrtf(z);
+ r = p/q;
+ w = r*s-pio2_lo;
+ return pi - (float)2.0*(s+w);
+ } else { /* x > 0.5 */
+ int32_t idf;
+ z = (one-x)*(float)0.5;
+ s = sqrtf(z);
+ df = s;
+ GET_FLOAT_WORD(idf,df);
+ SET_FLOAT_WORD(df,idf&0xfffff000);
+ c = (z-df*df)/(s+df);
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
+ q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
+ r = p/q;
+ w = r*s+c;
+ return (float)2.0*(df+w);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_acosh.c b/05/musl-0.6.0/src/math/e_acosh.c
new file mode 100644
index 0000000..8b454e7
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_acosh.c
@@ -0,0 +1,59 @@
+
+/* @(#)e_acosh.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+
+/* acosh(x)
+ * Method :
+ * Based on
+ * acosh(x) = log [ x + sqrt(x*x-1) ]
+ * we have
+ * acosh(x) := log(x)+ln2, if x is large; else
+ * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
+ * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
+ *
+ * Special cases:
+ * acosh(x) is NaN with signal if x<1.
+ * acosh(NaN) is NaN without signal.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one = 1.0,
+ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
+
+double
+acosh(double x)
+{
+ double t;
+ int32_t hx;
+ uint32_t lx;
+ EXTRACT_WORDS(hx,lx,x);
+ if(hx<0x3ff00000) { /* x < 1 */
+ return (x-x)/(x-x);
+ } else if(hx >=0x41b00000) { /* x > 2**28 */
+ if(hx >=0x7ff00000) { /* x is inf of NaN */
+ return x+x;
+ } else
+ return log(x)+ln2; /* acosh(huge)=log(2x) */
+ } else if(((hx-0x3ff00000)|lx)==0) {
+ return 0.0; /* acosh(1) = 0 */
+ } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
+ t=x*x;
+ return log(2.0*x-one/(x+sqrt(t-one)));
+ } else { /* 1<x<2 */
+ t = x-one;
+ return log1p(t+sqrt(2.0*t+t*t));
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_acoshf.c b/05/musl-0.6.0/src/math/e_acoshf.c
new file mode 100644
index 0000000..b7f1df6
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_acoshf.c
@@ -0,0 +1,45 @@
+/* e_acoshf.c -- float version of e_acosh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0,
+ln2 = 6.9314718246e-01; /* 0x3f317218 */
+
+float
+acoshf(float x)
+{
+ float t;
+ int32_t hx;
+ GET_FLOAT_WORD(hx,x);
+ if(hx<0x3f800000) { /* x < 1 */
+ return (x-x)/(x-x);
+ } else if(hx >=0x4d800000) { /* x > 2**28 */
+ if(hx >=0x7f800000) { /* x is inf of NaN */
+ return x+x;
+ } else
+ return logf(x)+ln2; /* acosh(huge)=log(2x) */
+ } else if (hx==0x3f800000) {
+ return 0.0; /* acosh(1) = 0 */
+ } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
+ t=x*x;
+ return logf((float)2.0*x-one/(x+sqrtf(t-one)));
+ } else { /* 1<x<2 */
+ t = x-one;
+ return log1pf(t+sqrtf((float)2.0*t+t*t));
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_asin.c b/05/musl-0.6.0/src/math/e_asin.c
new file mode 100644
index 0000000..4bf162a
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_asin.c
@@ -0,0 +1,109 @@
+
+/* @(#)e_asin.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* asin(x)
+ * Method :
+ * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
+ * we approximate asin(x) on [0,0.5] by
+ * asin(x) = x + x*x^2*R(x^2)
+ * where
+ * R(x^2) is a rational approximation of (asin(x)-x)/x^3
+ * and its remez error is bounded by
+ * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
+ *
+ * For x in [0.5,1]
+ * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
+ * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
+ * then for x>0.98
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
+ * For x<=0.98, let pio4_hi = pio2_hi/2, then
+ * f = hi part of s;
+ * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
+ * and
+ * asin(x) = pi/2 - 2*(s+s*z*R(z))
+ * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
+ * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
+ *
+ * Special cases:
+ * if x is NaN, return x itself;
+ * if |x|>1, return NaN with invalid signal.
+ *
+ */
+
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+huge = 1.000e+300,
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
+pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
+ /* coefficient for R(x^2) */
+pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
+pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
+pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
+pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
+qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
+qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+
+double
+asin(double x)
+{
+ double t=0.0,w,p,q,c,r,s;
+ int32_t hx,ix;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>= 0x3ff00000) { /* |x|>= 1 */
+ uint32_t lx;
+ GET_LOW_WORD(lx,x);
+ if(((ix-0x3ff00000)|lx)==0)
+ /* asin(1)=+-pi/2 with inexact */
+ return x*pio2_hi+x*pio2_lo;
+ return (x-x)/(x-x); /* asin(|x|>1) is NaN */
+ } else if (ix<0x3fe00000) { /* |x|<0.5 */
+ if(ix<0x3e400000) { /* if |x| < 2**-27 */
+ if(huge+x>one) return x;/* return x with inexact if x!=0*/
+ } else
+ t = x*x;
+ p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+ q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+ w = p/q;
+ return x+x*w;
+ }
+ /* 1> |x|>= 0.5 */
+ w = one-fabs(x);
+ t = w*0.5;
+ p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+ q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+ s = sqrt(t);
+ if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
+ w = p/q;
+ t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
+ } else {
+ w = s;
+ SET_LOW_WORD(w,0);
+ c = (t-w*w)/(s+w);
+ r = p/q;
+ p = 2.0*s*r-(pio2_lo-2.0*c);
+ q = pio4_hi-2.0*w;
+ t = pio4_hi-(p-q);
+ }
+ if(hx>0) return t; else return -t;
+}
diff --git a/05/musl-0.6.0/src/math/e_asinf.c b/05/musl-0.6.0/src/math/e_asinf.c
new file mode 100644
index 0000000..9c69397
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_asinf.c
@@ -0,0 +1,80 @@
+/* e_asinf.c -- float version of e_asin.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0000000000e+00, /* 0x3F800000 */
+huge = 1.000e+30,
+pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
+pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
+pio4_hi = 7.8539818525e-01, /* 0x3f490fdb */
+ /* coefficient for R(x^2) */
+pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
+pS1 = -3.2556581497e-01, /* 0xbea6b090 */
+pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
+pS3 = -4.0055535734e-02, /* 0xbd241146 */
+pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
+pS5 = 3.4793309169e-05, /* 0x3811ef08 */
+qS1 = -2.4033949375e+00, /* 0xc019d139 */
+qS2 = 2.0209457874e+00, /* 0x4001572d */
+qS3 = -6.8828397989e-01, /* 0xbf303361 */
+qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
+
+float
+asinf(float x)
+{
+ float t=0.0,w,p,q,c,r,s;
+ int32_t hx,ix;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix==0x3f800000) {
+ /* asin(1)=+-pi/2 with inexact */
+ return x*pio2_hi+x*pio2_lo;
+ } else if(ix> 0x3f800000) { /* |x|>= 1 */
+ return (x-x)/(x-x); /* asin(|x|>1) is NaN */
+ } else if (ix<0x3f000000) { /* |x|<0.5 */
+ if(ix<0x32000000) { /* if |x| < 2**-27 */
+ if(huge+x>one) return x;/* return x with inexact if x!=0*/
+ } else
+ t = x*x;
+ p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+ q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+ w = p/q;
+ return x+x*w;
+ }
+ /* 1> |x|>= 0.5 */
+ w = one-fabsf(x);
+ t = w*(float)0.5;
+ p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
+ q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
+ s = sqrtf(t);
+ if(ix>=0x3F79999A) { /* if |x| > 0.975 */
+ w = p/q;
+ t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo);
+ } else {
+ int32_t iw;
+ w = s;
+ GET_FLOAT_WORD(iw,w);
+ SET_FLOAT_WORD(w,iw&0xfffff000);
+ c = (t-w*w)/(s+w);
+ r = p/q;
+ p = (float)2.0*s*r-(pio2_lo-(float)2.0*c);
+ q = pio4_hi-(float)2.0*w;
+ t = pio4_hi-(p-q);
+ }
+ if(hx>0) return t; else return -t;
+}
diff --git a/05/musl-0.6.0/src/math/e_atan2.c b/05/musl-0.6.0/src/math/e_atan2.c
new file mode 100644
index 0000000..dd02116
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_atan2.c
@@ -0,0 +1,120 @@
+
+/* @(#)e_atan2.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+
+/* atan2(y,x)
+ * Method :
+ * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
+ * 2. Reduce x to positive by (if x and y are unexceptional):
+ * ARG (x+iy) = arctan(y/x) ... if x > 0,
+ * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
+ *
+ * Special cases:
+ *
+ * ATAN2((anything), NaN ) is NaN;
+ * ATAN2(NAN , (anything) ) is NaN;
+ * ATAN2(+-0, +(anything but NaN)) is +-0 ;
+ * ATAN2(+-0, -(anything but NaN)) is +-pi ;
+ * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
+ * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
+ * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
+ * ATAN2(+-INF,+INF ) is +-pi/4 ;
+ * ATAN2(+-INF,-INF ) is +-3pi/4;
+ * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+tiny = 1.0e-300,
+zero = 0.0,
+pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
+pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
+pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
+pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+
+double
+atan2(double y, double x)
+{
+ double z;
+ int32_t k,m,hx,hy,ix,iy;
+ uint32_t lx,ly;
+
+ EXTRACT_WORDS(hx,lx,x);
+ ix = hx&0x7fffffff;
+ EXTRACT_WORDS(hy,ly,y);
+ iy = hy&0x7fffffff;
+ if(((ix|((lx|-lx)>>31))>0x7ff00000)||
+ ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
+ return x+y;
+ if(((hx-0x3ff00000)|lx)==0) return atan(y); /* x=1.0 */
+ m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
+
+ /* when y = 0 */
+ if((iy|ly)==0) {
+ switch(m) {
+ case 0:
+ case 1: return y; /* atan(+-0,+anything)=+-0 */
+ case 2: return pi+tiny;/* atan(+0,-anything) = pi */
+ case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+ }
+ }
+ /* when x = 0 */
+ if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+ /* when x is INF */
+ if(ix==0x7ff00000) {
+ if(iy==0x7ff00000) {
+ switch(m) {
+ case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
+ case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+ case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
+ case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
+ }
+ } else {
+ switch(m) {
+ case 0: return zero ; /* atan(+...,+INF) */
+ case 1: return -zero ; /* atan(-...,+INF) */
+ case 2: return pi+tiny ; /* atan(+...,-INF) */
+ case 3: return -pi-tiny ; /* atan(-...,-INF) */
+ }
+ }
+ }
+ /* when y is INF */
+ if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+ /* compute y/x */
+ k = (iy-ix)>>20;
+ if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
+ else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
+ else z=atan(fabs(y/x)); /* safe to do y/x */
+ switch (m) {
+ case 0: return z ; /* atan(+,+) */
+ case 1: {
+ uint32_t zh;
+ GET_HIGH_WORD(zh,z);
+ SET_HIGH_WORD(z,zh ^ 0x80000000);
+ }
+ return z ; /* atan(-,+) */
+ case 2: return pi-(z-pi_lo);/* atan(+,-) */
+ default: /* case 3 */
+ return (z-pi_lo)-pi;/* atan(-,-) */
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_atan2f.c b/05/musl-0.6.0/src/math/e_atan2f.c
new file mode 100644
index 0000000..535e10a
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_atan2f.c
@@ -0,0 +1,93 @@
+/* e_atan2f.c -- float version of e_atan2.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+tiny = 1.0e-30,
+zero = 0.0,
+pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */
+pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */
+pi = 3.1415927410e+00, /* 0x40490fdb */
+pi_lo = -8.7422776573e-08; /* 0xb3bbbd2e */
+
+float
+atan2f(float y, float x)
+{
+ float z;
+ int32_t k,m,hx,hy,ix,iy;
+
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ GET_FLOAT_WORD(hy,y);
+ iy = hy&0x7fffffff;
+ if((ix>0x7f800000)||
+ (iy>0x7f800000)) /* x or y is NaN */
+ return x+y;
+ if(hx==0x3f800000) return atanf(y); /* x=1.0 */
+ m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
+
+ /* when y = 0 */
+ if(iy==0) {
+ switch(m) {
+ case 0:
+ case 1: return y; /* atan(+-0,+anything)=+-0 */
+ case 2: return pi+tiny;/* atan(+0,-anything) = pi */
+ case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
+ }
+ }
+ /* when x = 0 */
+ if(ix==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+ /* when x is INF */
+ if(ix==0x7f800000) {
+ if(iy==0x7f800000) {
+ switch(m) {
+ case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
+ case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
+ case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
+ case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
+ }
+ } else {
+ switch(m) {
+ case 0: return zero ; /* atan(+...,+INF) */
+ case 1: return -zero ; /* atan(-...,+INF) */
+ case 2: return pi+tiny ; /* atan(+...,-INF) */
+ case 3: return -pi-tiny ; /* atan(-...,-INF) */
+ }
+ }
+ }
+ /* when y is INF */
+ if(iy==0x7f800000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
+
+ /* compute y/x */
+ k = (iy-ix)>>23;
+ if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */
+ else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
+ else z=atanf(fabsf(y/x)); /* safe to do y/x */
+ switch (m) {
+ case 0: return z ; /* atan(+,+) */
+ case 1: {
+ uint32_t zh;
+ GET_FLOAT_WORD(zh,z);
+ SET_FLOAT_WORD(z,zh ^ 0x80000000);
+ }
+ return z ; /* atan(-,+) */
+ case 2: return pi-(z-pi_lo);/* atan(+,-) */
+ default: /* case 3 */
+ return (z-pi_lo)-pi;/* atan(-,-) */
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_atanh.c b/05/musl-0.6.0/src/math/e_atanh.c
new file mode 100644
index 0000000..45f1c96
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_atanh.c
@@ -0,0 +1,59 @@
+
+/* @(#)e_atanh.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+
+/* atanh(x)
+ * Method :
+ * 1.Reduced x to positive by atanh(-x) = -atanh(x)
+ * 2.For x>=0.5
+ * 1 2x x
+ * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+ * 2 1 - x 1 - x
+ *
+ * For x<0.5
+ * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
+ *
+ * Special cases:
+ * atanh(x) is NaN if |x| > 1 with signal;
+ * atanh(NaN) is that NaN with no signal;
+ * atanh(+-1) is +-INF with signal.
+ *
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one = 1.0, huge = 1e300;
+static const double zero = 0.0;
+
+double
+atanh(double x)
+{
+ double t;
+ int32_t hx,ix;
+ uint32_t lx;
+ EXTRACT_WORDS(hx,lx,x);
+ ix = hx&0x7fffffff;
+ if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
+ return (x-x)/(x-x);
+ if(ix==0x3ff00000)
+ return x/zero;
+ if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
+ SET_HIGH_WORD(x,ix);
+ if(ix<0x3fe00000) { /* x < 0.5 */
+ t = x+x;
+ t = 0.5*log1p(t+t*x/(one-x));
+ } else
+ t = 0.5*log1p((x+x)/(one-x));
+ if(hx>=0) return t; else return -t;
+}
diff --git a/05/musl-0.6.0/src/math/e_atanhf.c b/05/musl-0.6.0/src/math/e_atanhf.c
new file mode 100644
index 0000000..7356cfc
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_atanhf.c
@@ -0,0 +1,42 @@
+/* e_atanhf.c -- float version of e_atanh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one = 1.0, huge = 1e30;
+
+static const float zero = 0.0;
+
+float
+atanhf(float x)
+{
+ float t;
+ int32_t hx,ix;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if (ix>0x3f800000) /* |x|>1 */
+ return (x-x)/(x-x);
+ if(ix==0x3f800000)
+ return x/zero;
+ if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */
+ SET_FLOAT_WORD(x,ix);
+ if(ix<0x3f000000) { /* x < 0.5 */
+ t = x+x;
+ t = (float)0.5*log1pf(t+t*x/(one-x));
+ } else
+ t = (float)0.5*log1pf((x+x)/(one-x));
+ if(hx>=0) return t; else return -t;
+}
diff --git a/05/musl-0.6.0/src/math/e_cosh.c b/05/musl-0.6.0/src/math/e_cosh.c
new file mode 100644
index 0000000..ad425bd
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_cosh.c
@@ -0,0 +1,82 @@
+
+/* @(#)e_cosh.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* cosh(x)
+ * Method :
+ * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+ * 1. Replace x by |x| (cosh(x) = cosh(-x)).
+ * 2.
+ * [ exp(x) - 1 ]^2
+ * 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
+ * 2*exp(x)
+ *
+ * exp(x) + 1/exp(x)
+ * ln2/2 <= x <= 22 : cosh(x) := -------------------
+ * 2
+ * 22 <= x <= lnovft : cosh(x) := exp(x)/2
+ * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
+ * ln2ovft < x : cosh(x) := huge*huge (overflow)
+ *
+ * Special cases:
+ * cosh(x) is |x| if x is +INF, -INF, or NaN.
+ * only cosh(0)=1 is exact for finite x.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one = 1.0, half=0.5, huge = 1.0e300;
+
+double
+cosh(double x)
+{
+ double t,w;
+ int32_t ix;
+ uint32_t lx;
+
+ /* High word of |x|. */
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7ff00000) return x*x;
+
+ /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+ if(ix<0x3fd62e43) {
+ t = expm1(fabs(x));
+ w = one+t;
+ if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
+ return one+(t*t)/(w+w);
+ }
+
+ /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+ if (ix < 0x40360000) {
+ t = exp(fabs(x));
+ return half*t+half/t;
+ }
+
+ /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+ if (ix < 0x40862E42) return half*exp(fabs(x));
+
+ /* |x| in [log(maxdouble), overflowthresold] */
+ GET_LOW_WORD(lx,x);
+ if (ix<0x408633CE ||
+ ((ix==0x408633ce)&&(lx<=(uint32_t)0x8fb9f87d))) {
+ w = exp(half*fabs(x));
+ t = half*w;
+ return t*w;
+ }
+
+ /* |x| > overflowthresold, cosh(x) overflow */
+ return huge*huge;
+}
diff --git a/05/musl-0.6.0/src/math/e_coshf.c b/05/musl-0.6.0/src/math/e_coshf.c
new file mode 100644
index 0000000..6db1088
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_coshf.c
@@ -0,0 +1,59 @@
+/* e_coshf.c -- float version of e_cosh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one = 1.0, half=0.5, huge = 1.0e30;
+
+float
+coshf(float x)
+{
+ float t,w;
+ int32_t ix;
+
+ GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7f800000) return x*x;
+
+ /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
+ if(ix<0x3eb17218) {
+ t = expm1f(fabsf(x));
+ w = one+t;
+ if (ix<0x24000000) return w; /* cosh(tiny) = 1 */
+ return one+(t*t)/(w+w);
+ }
+
+ /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
+ if (ix < 0x41b00000) {
+ t = expf(fabsf(x));
+ return half*t+half/t;
+ }
+
+ /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
+ if (ix < 0x42b17180) return half*expf(fabsf(x));
+
+ /* |x| in [log(maxdouble), overflowthresold] */
+ if (ix<=0x42b2d4fc) {
+ w = expf(half*fabsf(x));
+ t = half*w;
+ return t*w;
+ }
+
+ /* |x| > overflowthresold, cosh(x) overflow */
+ return huge*huge;
+}
diff --git a/05/musl-0.6.0/src/math/e_exp.c b/05/musl-0.6.0/src/math/e_exp.c
new file mode 100644
index 0000000..66107b9
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_exp.c
@@ -0,0 +1,155 @@
+
+/* @(#)e_exp.c 1.6 04/04/22 */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remes algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + -------
+ * R - r
+ * r*R1(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - R1(r)
+ * where
+ * 2 4 10
+ * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then exp(x) overflow
+ * if x < -7.45133219101941108420e+02 then exp(x) underflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one = 1.0,
+halF[2] = {0.5,-0.5,},
+huge = 1.0e+300,
+twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
+o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
+u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
+ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
+ -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
+ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
+ -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
+P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+
+
+double
+exp(double x) /* default IEEE double exp */
+{
+ double y,hi=0.0,lo=0.0,c,t;
+ int32_t k=0,xsb;
+ uint32_t hx;
+
+ GET_HIGH_WORD(hx,x);
+ xsb = (hx>>31)&1; /* sign bit of x */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out non-finite argument */
+ if(hx >= 0x40862E42) { /* if |x|>=709.78... */
+ if(hx>=0x7ff00000) {
+ uint32_t lx;
+ GET_LOW_WORD(lx,x);
+ if(((hx&0xfffff)|lx)!=0)
+ return x+x; /* NaN */
+ else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
+ }
+ if(x > o_threshold) return huge*huge; /* overflow */
+ if(x < u_threshold) return twom1000*twom1000; /* underflow */
+ }
+
+ /* argument reduction */
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
+ } else {
+ k = (int)(invln2*x+halF[xsb]);
+ t = k;
+ hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
+ lo = t*ln2LO[0];
+ }
+ x = hi - lo;
+ }
+ else if(hx < 0x3e300000) { /* when |x|<2**-28 */
+ if(huge+x>one) return one+x;/* trigger inexact */
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ t = x*x;
+ c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ if(k==0) return one-((x*c)/(c-2.0)-x);
+ else y = one-((lo-(x*c)/(2.0-c))-hi);
+ if(k >= -1021) {
+ uint32_t hy;
+ GET_HIGH_WORD(hy,y);
+ SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
+ return y;
+ } else {
+ uint32_t hy;
+ GET_HIGH_WORD(hy,y);
+ SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
+ return y*twom1000;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_expf.c b/05/musl-0.6.0/src/math/e_expf.c
new file mode 100644
index 0000000..99818ed
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_expf.c
@@ -0,0 +1,91 @@
+/* e_expf.c -- float version of e_exp.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0,
+halF[2] = {0.5,-0.5,},
+huge = 1.0e+30,
+twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */
+o_threshold= 8.8721679688e+01, /* 0x42b17180 */
+u_threshold= -1.0397208405e+02, /* 0xc2cff1b5 */
+ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */
+ -6.9313812256e-01,}, /* 0xbf317180 */
+ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */
+ -9.0580006145e-06,}, /* 0xb717f7d1 */
+invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
+P1 = 1.6666667163e-01, /* 0x3e2aaaab */
+P2 = -2.7777778450e-03, /* 0xbb360b61 */
+P3 = 6.6137559770e-05, /* 0x388ab355 */
+P4 = -1.6533901999e-06, /* 0xb5ddea0e */
+P5 = 4.1381369442e-08; /* 0x3331bb4c */
+
+float
+expf(float x) /* default IEEE double exp */
+{
+ float y,hi=0.0,lo=0.0,c,t;
+ int32_t k=0,xsb;
+ uint32_t hx;
+
+ GET_FLOAT_WORD(hx,x);
+ xsb = (hx>>31)&1; /* sign bit of x */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out non-finite argument */
+ if(hx >= 0x42b17218) { /* if |x|>=88.721... */
+ if(hx>0x7f800000)
+ return x+x; /* NaN */
+ if(hx==0x7f800000)
+ return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
+ if(x > o_threshold) return huge*huge; /* overflow */
+ if(x < u_threshold) return twom100*twom100; /* underflow */
+ }
+
+ /* argument reduction */
+ if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
+ hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
+ } else {
+ k = invln2*x+halF[xsb];
+ t = k;
+ hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
+ lo = t*ln2LO[0];
+ }
+ x = hi - lo;
+ }
+ else if(hx < 0x31800000) { /* when |x|<2**-28 */
+ if(huge+x>one) return one+x;/* trigger inexact */
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ t = x*x;
+ c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ if(k==0) return one-((x*c)/(c-(float)2.0)-x);
+ else y = one-((lo-(x*c)/((float)2.0-c))-hi);
+ if(k >= -125) {
+ uint32_t hy;
+ GET_FLOAT_WORD(hy,y);
+ SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */
+ return y;
+ } else {
+ uint32_t hy;
+ GET_FLOAT_WORD(hy,y);
+ SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */
+ return y*twom100;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_fmod.c b/05/musl-0.6.0/src/math/e_fmod.c
new file mode 100644
index 0000000..99afe48
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_fmod.c
@@ -0,0 +1,129 @@
+
+/* @(#)e_fmod.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * fmod(x,y)
+ * Return x mod y in exact arithmetic
+ * Method: shift and subtract
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one = 1.0, Zero[] = {0.0, -0.0,};
+
+double
+fmod(double x, double y)
+{
+ int32_t n,hx,hy,hz,ix,iy,sx,i;
+ uint32_t lx,ly,lz;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hy,ly,y);
+ sx = hx&0x80000000; /* sign of x */
+ hx ^=sx; /* |x| */
+ hy &= 0x7fffffff; /* |y| */
+
+ /* purge off exception values */
+ if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
+ ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
+ return (x*y)/(x*y);
+ if(hx<=hy) {
+ if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
+ if(lx==ly)
+ return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
+ }
+
+ /* determine ix = ilogb(x) */
+ if(hx<0x00100000) { /* subnormal x */
+ if(hx==0) {
+ for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
+ } else {
+ for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
+ }
+ } else ix = (hx>>20)-1023;
+
+ /* determine iy = ilogb(y) */
+ if(hy<0x00100000) { /* subnormal y */
+ if(hy==0) {
+ for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
+ } else {
+ for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
+ }
+ } else iy = (hy>>20)-1023;
+
+ /* set up {hx,lx}, {hy,ly} and align y to x */
+ if(ix >= -1022)
+ hx = 0x00100000|(0x000fffff&hx);
+ else { /* subnormal x, shift x to normal */
+ n = -1022-ix;
+ if(n<=31) {
+ hx = (hx<<n)|(lx>>(32-n));
+ lx <<= n;
+ } else {
+ hx = lx<<(n-32);
+ lx = 0;
+ }
+ }
+ if(iy >= -1022)
+ hy = 0x00100000|(0x000fffff&hy);
+ else { /* subnormal y, shift y to normal */
+ n = -1022-iy;
+ if(n<=31) {
+ hy = (hy<<n)|(ly>>(32-n));
+ ly <<= n;
+ } else {
+ hy = ly<<(n-32);
+ ly = 0;
+ }
+ }
+
+ /* fix point fmod */
+ n = ix - iy;
+ while(n--) {
+ hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+ if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
+ else {
+ if((hz|lz)==0) /* return sign(x)*0 */
+ return Zero[(uint32_t)sx>>31];
+ hx = hz+hz+(lz>>31); lx = lz+lz;
+ }
+ }
+ hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+ if(hz>=0) {hx=hz;lx=lz;}
+
+ /* convert back to floating value and restore the sign */
+ if((hx|lx)==0) /* return sign(x)*0 */
+ return Zero[(uint32_t)sx>>31];
+ while(hx<0x00100000) { /* normalize x */
+ hx = hx+hx+(lx>>31); lx = lx+lx;
+ iy -= 1;
+ }
+ if(iy>= -1022) { /* normalize output */
+ hx = ((hx-0x00100000)|((iy+1023)<<20));
+ INSERT_WORDS(x,hx|sx,lx);
+ } else { /* subnormal output */
+ n = -1022 - iy;
+ if(n<=20) {
+ lx = (lx>>n)|((uint32_t)hx<<(32-n));
+ hx >>= n;
+ } else if (n<=31) {
+ lx = (hx<<(32-n))|(lx>>n); hx = sx;
+ } else {
+ lx = hx>>(n-32); hx = sx;
+ }
+ INSERT_WORDS(x,hx|sx,lx);
+ x *= one; /* create necessary signal */
+ }
+ return x; /* exact output */
+}
diff --git a/05/musl-0.6.0/src/math/e_fmodf.c b/05/musl-0.6.0/src/math/e_fmodf.c
new file mode 100644
index 0000000..fe86cb0
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_fmodf.c
@@ -0,0 +1,101 @@
+/* e_fmodf.c -- float version of e_fmod.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * fmodf(x,y)
+ * Return x mod y in exact arithmetic
+ * Method: shift and subtract
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one = 1.0, Zero[] = {0.0, -0.0,};
+
+float
+fmodf(float x, float y)
+{
+ int32_t n,hx,hy,hz,ix,iy,sx,i;
+
+ GET_FLOAT_WORD(hx,x);
+ GET_FLOAT_WORD(hy,y);
+ sx = hx&0x80000000; /* sign of x */
+ hx ^=sx; /* |x| */
+ hy &= 0x7fffffff; /* |y| */
+
+ /* purge off exception values */
+ if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */
+ (hy>0x7f800000)) /* or y is NaN */
+ return (x*y)/(x*y);
+ if(hx<hy) return x; /* |x|<|y| return x */
+ if(hx==hy)
+ return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
+
+ /* determine ix = ilogb(x) */
+ if(hx<0x00800000) { /* subnormal x */
+ for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
+ } else ix = (hx>>23)-127;
+
+ /* determine iy = ilogb(y) */
+ if(hy<0x00800000) { /* subnormal y */
+ for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
+ } else iy = (hy>>23)-127;
+
+ /* set up {hx,lx}, {hy,ly} and align y to x */
+ if(ix >= -126)
+ hx = 0x00800000|(0x007fffff&hx);
+ else { /* subnormal x, shift x to normal */
+ n = -126-ix;
+ hx = hx<<n;
+ }
+ if(iy >= -126)
+ hy = 0x00800000|(0x007fffff&hy);
+ else { /* subnormal y, shift y to normal */
+ n = -126-iy;
+ hy = hy<<n;
+ }
+
+ /* fix point fmod */
+ n = ix - iy;
+ while(n--) {
+ hz=hx-hy;
+ if(hz<0){hx = hx+hx;}
+ else {
+ if(hz==0) /* return sign(x)*0 */
+ return Zero[(uint32_t)sx>>31];
+ hx = hz+hz;
+ }
+ }
+ hz=hx-hy;
+ if(hz>=0) {hx=hz;}
+
+ /* convert back to floating value and restore the sign */
+ if(hx==0) /* return sign(x)*0 */
+ return Zero[(uint32_t)sx>>31];
+ while(hx<0x00800000) { /* normalize x */
+ hx = hx+hx;
+ iy -= 1;
+ }
+ if(iy>= -126) { /* normalize output */
+ hx = ((hx-0x00800000)|((iy+127)<<23));
+ SET_FLOAT_WORD(x,hx|sx);
+ } else { /* subnormal output */
+ n = -126 - iy;
+ hx >>= n;
+ SET_FLOAT_WORD(x,hx|sx);
+ x *= one; /* create necessary signal */
+ }
+ return x; /* exact output */
+}
diff --git a/05/musl-0.6.0/src/math/e_hypot.c b/05/musl-0.6.0/src/math/e_hypot.c
new file mode 100644
index 0000000..e925adc
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_hypot.c
@@ -0,0 +1,121 @@
+
+/* @(#)e_hypot.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* hypot(x,y)
+ *
+ * Method :
+ * If (assume round-to-nearest) z=x*x+y*y
+ * has error less than sqrt(2)/2 ulp, than
+ * sqrt(z) has error less than 1 ulp (exercise).
+ *
+ * So, compute sqrt(x*x+y*y) with some care as
+ * follows to get the error below 1 ulp:
+ *
+ * Assume x>y>0;
+ * (if possible, set rounding to round-to-nearest)
+ * 1. if x > 2y use
+ * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
+ * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
+ * 2. if x <= 2y use
+ * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
+ * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
+ * y1= y with lower 32 bits chopped, y2 = y-y1.
+ *
+ * NOTE: scaling may be necessary if some argument is too
+ * large or too tiny
+ *
+ * Special cases:
+ * hypot(x,y) is INF if x or y is +INF or -INF; else
+ * hypot(x,y) is NAN if x or y is NAN.
+ *
+ * Accuracy:
+ * hypot(x,y) returns sqrt(x^2+y^2) with error less
+ * than 1 ulps (units in the last place)
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+hypot(double x, double y)
+{
+ double a=x,b=y,t1,t2,y1,y2,w;
+ int32_t j,k,ha,hb;
+
+ GET_HIGH_WORD(ha,x);
+ ha &= 0x7fffffff;
+ GET_HIGH_WORD(hb,y);
+ hb &= 0x7fffffff;
+ if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
+ SET_HIGH_WORD(a,ha); /* a <- |a| */
+ SET_HIGH_WORD(b,hb); /* b <- |b| */
+ if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
+ k=0;
+ if(ha > 0x5f300000) { /* a>2**500 */
+ if(ha >= 0x7ff00000) { /* Inf or NaN */
+ uint32_t low;
+ w = a+b; /* for sNaN */
+ GET_LOW_WORD(low,a);
+ if(((ha&0xfffff)|low)==0) w = a;
+ GET_LOW_WORD(low,b);
+ if(((hb^0x7ff00000)|low)==0) w = b;
+ return w;
+ }
+ /* scale a and b by 2**-600 */
+ ha -= 0x25800000; hb -= 0x25800000; k += 600;
+ SET_HIGH_WORD(a,ha);
+ SET_HIGH_WORD(b,hb);
+ }
+ if(hb < 0x20b00000) { /* b < 2**-500 */
+ if(hb <= 0x000fffff) { /* subnormal b or 0 */
+ uint32_t low;
+ GET_LOW_WORD(low,b);
+ if((hb|low)==0) return a;
+ t1=0;
+ SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
+ b *= t1;
+ a *= t1;
+ k -= 1022;
+ } else { /* scale a and b by 2^600 */
+ ha += 0x25800000; /* a *= 2^600 */
+ hb += 0x25800000; /* b *= 2^600 */
+ k -= 600;
+ SET_HIGH_WORD(a,ha);
+ SET_HIGH_WORD(b,hb);
+ }
+ }
+ /* medium size a and b */
+ w = a-b;
+ if (w>b) {
+ t1 = 0;
+ SET_HIGH_WORD(t1,ha);
+ t2 = a-t1;
+ w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
+ } else {
+ a = a+a;
+ y1 = 0;
+ SET_HIGH_WORD(y1,hb);
+ y2 = b - y1;
+ t1 = 0;
+ SET_HIGH_WORD(t1,ha+0x00100000);
+ t2 = a - t1;
+ w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+ }
+ if(k!=0) {
+ uint32_t high;
+ t1 = 1.0;
+ GET_HIGH_WORD(high,t1);
+ SET_HIGH_WORD(t1,high+(k<<20));
+ return t1*w;
+ } else return w;
+}
diff --git a/05/musl-0.6.0/src/math/e_hypotf.c b/05/musl-0.6.0/src/math/e_hypotf.c
new file mode 100644
index 0000000..1377355
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_hypotf.c
@@ -0,0 +1,79 @@
+/* e_hypotf.c -- float version of e_hypot.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+hypotf(float x, float y)
+{
+ float a=x,b=y,t1,t2,y1,y2,w;
+ int32_t j,k,ha,hb;
+
+ GET_FLOAT_WORD(ha,x);
+ ha &= 0x7fffffff;
+ GET_FLOAT_WORD(hb,y);
+ hb &= 0x7fffffff;
+ if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
+ SET_FLOAT_WORD(a,ha); /* a <- |a| */
+ SET_FLOAT_WORD(b,hb); /* b <- |b| */
+ if((ha-hb)>0xf000000) {return a+b;} /* x/y > 2**30 */
+ k=0;
+ if(ha > 0x58800000) { /* a>2**50 */
+ if(ha >= 0x7f800000) { /* Inf or NaN */
+ w = a+b; /* for sNaN */
+ if(ha == 0x7f800000) w = a;
+ if(hb == 0x7f800000) w = b;
+ return w;
+ }
+ /* scale a and b by 2**-68 */
+ ha -= 0x22000000; hb -= 0x22000000; k += 68;
+ SET_FLOAT_WORD(a,ha);
+ SET_FLOAT_WORD(b,hb);
+ }
+ if(hb < 0x26800000) { /* b < 2**-50 */
+ if(hb <= 0x007fffff) { /* subnormal b or 0 */
+ if(hb==0) return a;
+ SET_FLOAT_WORD(t1,0x7e800000); /* t1=2^126 */
+ b *= t1;
+ a *= t1;
+ k -= 126;
+ } else { /* scale a and b by 2^68 */
+ ha += 0x22000000; /* a *= 2^68 */
+ hb += 0x22000000; /* b *= 2^68 */
+ k -= 68;
+ SET_FLOAT_WORD(a,ha);
+ SET_FLOAT_WORD(b,hb);
+ }
+ }
+ /* medium size a and b */
+ w = a-b;
+ if (w>b) {
+ SET_FLOAT_WORD(t1,ha&0xfffff000);
+ t2 = a-t1;
+ w = sqrtf(t1*t1-(b*(-b)-t2*(a+t1)));
+ } else {
+ a = a+a;
+ SET_FLOAT_WORD(y1,hb&0xfffff000);
+ y2 = b - y1;
+ SET_FLOAT_WORD(t1,ha+0x00800000);
+ t2 = a - t1;
+ w = sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
+ }
+ if(k!=0) {
+ SET_FLOAT_WORD(t1,0x3f800000+(k<<23));
+ return t1*w;
+ } else return w;
+}
diff --git a/05/musl-0.6.0/src/math/e_log.c b/05/musl-0.6.0/src/math/e_log.c
new file mode 100644
index 0000000..9eb0e44
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_log.c
@@ -0,0 +1,131 @@
+
+/* @(#)e_log.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* log(x)
+ * Return the logrithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+static const double zero = 0.0;
+
+double
+log(double x)
+{
+ double hfsq,f,s,z,R,w,t1,t2,dk;
+ int32_t k,hx,i,j;
+ uint32_t lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ k=0;
+ if (hx < 0x00100000) { /* x < 2**-1022 */
+ if (((hx&0x7fffffff)|lx)==0)
+ return -two54/zero; /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
+ k -= 54; x *= two54; /* subnormal number, scale up x */
+ GET_HIGH_WORD(hx,x);
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ k += (hx>>20)-1023;
+ hx &= 0x000fffff;
+ i = (hx+0x95f64)&0x100000;
+ SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
+ k += (i>>20);
+ f = x-1.0;
+ if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
+ if(f==zero) { if(k==0) return zero; else {dk=(double)k;
+ return dk*ln2_hi+dk*ln2_lo;} }
+ R = f*f*(0.5-0.33333333333333333*f);
+ if(k==0) return f-R; else {dk=(double)k;
+ return dk*ln2_hi-((R-dk*ln2_lo)-f);}
+ }
+ s = f/(2.0+f);
+ dk = (double)k;
+ z = s*s;
+ i = hx-0x6147a;
+ w = z*z;
+ j = 0x6b851-hx;
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ i |= j;
+ R = t2+t1;
+ if(i>0) {
+ hfsq=0.5*f*f;
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
+ } else {
+ if(k==0) return f-s*(f-R); else
+ return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_log10.c b/05/musl-0.6.0/src/math/e_log10.c
new file mode 100644
index 0000000..3be179f
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_log10.c
@@ -0,0 +1,83 @@
+
+/* @(#)e_log10.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* log10(x)
+ * Return the base 10 logarithm of x
+ *
+ * Method :
+ * Let log10_2hi = leading 40 bits of log10(2) and
+ * log10_2lo = log10(2) - log10_2hi,
+ * ivln10 = 1/log(10) rounded.
+ * Then
+ * n = ilogb(x),
+ * if(n<0) n = n+1;
+ * x = scalbn(x,-n);
+ * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
+ *
+ * Note 1:
+ * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
+ * mode must set to Round-to-Nearest.
+ * Note 2:
+ * [1/log(10)] rounded to 53 bits has error .198 ulps;
+ * log10 is monotonic at all binary break points.
+ *
+ * Special cases:
+ * log10(x) is NaN with signal if x < 0;
+ * log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
+ * log10(NaN) is that NaN with no signal;
+ * log10(10**N) = N for N=0,1,...,22.
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following constants.
+ * The decimal values may be used, provided that the compiler will convert
+ * from decimal to binary accurately enough to produce the hexadecimal values
+ * shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
+log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
+log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
+
+static const double zero = 0.0;
+
+double
+log10(double x)
+{
+ double y,z;
+ int32_t i,k,hx;
+ uint32_t lx;
+
+ EXTRACT_WORDS(hx,lx,x);
+
+ k=0;
+ if (hx < 0x00100000) { /* x < 2**-1022 */
+ if (((hx&0x7fffffff)|lx)==0)
+ return -two54/zero; /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
+ k -= 54; x *= two54; /* subnormal number, scale up x */
+ GET_HIGH_WORD(hx,x);
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ k += (hx>>20)-1023;
+ i = ((uint32_t)k&0x80000000)>>31;
+ hx = (hx&0x000fffff)|((0x3ff-i)<<20);
+ y = (double)(k+i);
+ SET_HIGH_WORD(x,hx);
+ z = y*log10_2lo + ivln10*log(x);
+ return z+y*log10_2hi;
+}
diff --git a/05/musl-0.6.0/src/math/e_log10f.c b/05/musl-0.6.0/src/math/e_log10f.c
new file mode 100644
index 0000000..8fc5c5c
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_log10f.c
@@ -0,0 +1,51 @@
+/* e_log10f.c -- float version of e_log10.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+two25 = 3.3554432000e+07, /* 0x4c000000 */
+ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */
+log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
+log10_2lo = 7.9034151668e-07; /* 0x355427db */
+
+static const float zero = 0.0;
+
+float
+log10f(float x)
+{
+ float y,z;
+ int32_t i,k,hx;
+
+ GET_FLOAT_WORD(hx,x);
+
+ k=0;
+ if (hx < 0x00800000) { /* x < 2**-126 */
+ if ((hx&0x7fffffff)==0)
+ return -two25/zero; /* log(+-0)=-inf */
+ if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
+ k -= 25; x *= two25; /* subnormal number, scale up x */
+ GET_FLOAT_WORD(hx,x);
+ }
+ if (hx >= 0x7f800000) return x+x;
+ k += (hx>>23)-127;
+ i = ((uint32_t)k&0x80000000)>>31;
+ hx = (hx&0x007fffff)|((0x7f-i)<<23);
+ y = (float)(k+i);
+ SET_FLOAT_WORD(x,hx);
+ z = y*log10_2lo + ivln10*logf(x);
+ return z+y*log10_2hi;
+}
diff --git a/05/musl-0.6.0/src/math/e_logf.c b/05/musl-0.6.0/src/math/e_logf.c
new file mode 100644
index 0000000..46a8b8c
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_logf.c
@@ -0,0 +1,81 @@
+/* e_logf.c -- float version of e_log.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+two25 = 3.355443200e+07, /* 0x4c000000 */
+Lg1 = 6.6666668653e-01, /* 3F2AAAAB */
+Lg2 = 4.0000000596e-01, /* 3ECCCCCD */
+Lg3 = 2.8571429849e-01, /* 3E924925 */
+Lg4 = 2.2222198546e-01, /* 3E638E29 */
+Lg5 = 1.8183572590e-01, /* 3E3A3325 */
+Lg6 = 1.5313838422e-01, /* 3E1CD04F */
+Lg7 = 1.4798198640e-01; /* 3E178897 */
+
+static const float zero = 0.0;
+
+float
+logf(float x)
+{
+ float hfsq,f,s,z,R,w,t1,t2,dk;
+ int32_t k,ix,i,j;
+
+ GET_FLOAT_WORD(ix,x);
+
+ k=0;
+ if (ix < 0x00800000) { /* x < 2**-126 */
+ if ((ix&0x7fffffff)==0)
+ return -two25/zero; /* log(+-0)=-inf */
+ if (ix<0) return (x-x)/zero; /* log(-#) = NaN */
+ k -= 25; x *= two25; /* subnormal number, scale up x */
+ GET_FLOAT_WORD(ix,x);
+ }
+ if (ix >= 0x7f800000) return x+x;
+ k += (ix>>23)-127;
+ ix &= 0x007fffff;
+ i = (ix+(0x95f64<<3))&0x800000;
+ SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */
+ k += (i>>23);
+ f = x-(float)1.0;
+ if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */
+ if(f==zero) { if(k==0) return zero; else {dk=(float)k;
+ return dk*ln2_hi+dk*ln2_lo;} }
+ R = f*f*((float)0.5-(float)0.33333333333333333*f);
+ if(k==0) return f-R; else {dk=(float)k;
+ return dk*ln2_hi-((R-dk*ln2_lo)-f);}
+ }
+ s = f/((float)2.0+f);
+ dk = (float)k;
+ z = s*s;
+ i = ix-(0x6147a<<3);
+ w = z*z;
+ j = (0x6b851<<3)-ix;
+ t1= w*(Lg2+w*(Lg4+w*Lg6));
+ t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+ i |= j;
+ R = t2+t1;
+ if(i>0) {
+ hfsq=(float)0.5*f*f;
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
+ } else {
+ if(k==0) return f-s*(f-R); else
+ return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/e_pow.c b/05/musl-0.6.0/src/math/e_pow.c
new file mode 100644
index 0000000..aad2428
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_pow.c
@@ -0,0 +1,300 @@
+/* @(#)e_pow.c 1.5 04/04/22 SMI */
+/*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* pow(x,y) return x**y
+ *
+ * n
+ * Method: Let x = 2 * (1+f)
+ * 1. Compute and return log2(x) in two pieces:
+ * log2(x) = w1 + w2,
+ * where w1 has 53-24 = 29 bit trailing zeros.
+ * 2. Perform y*log2(x) = n+y' by simulating muti-precision
+ * arithmetic, where |y'|<=0.5.
+ * 3. Return x**y = 2**n*exp(y'*log2)
+ *
+ * Special cases:
+ * 1. (anything) ** 0 is 1
+ * 2. (anything) ** 1 is itself
+ * 3. (anything) ** NAN is NAN
+ * 4. NAN ** (anything except 0) is NAN
+ * 5. +-(|x| > 1) ** +INF is +INF
+ * 6. +-(|x| > 1) ** -INF is +0
+ * 7. +-(|x| < 1) ** +INF is +0
+ * 8. +-(|x| < 1) ** -INF is +INF
+ * 9. +-1 ** +-INF is NAN
+ * 10. +0 ** (+anything except 0, NAN) is +0
+ * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
+ * 12. +0 ** (-anything except 0, NAN) is +INF
+ * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
+ * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
+ * 15. +INF ** (+anything except 0,NAN) is +INF
+ * 16. +INF ** (-anything except 0,NAN) is +0
+ * 17. -INF ** (anything) = -0 ** (-anything)
+ * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
+ * 19. (-anything except 0 and inf) ** (non-integer) is NAN
+ *
+ * Accuracy:
+ * pow(x,y) returns x**y nearly rounded. In particular
+ * pow(integer,integer)
+ * always returns the correct integer provided it is
+ * representable.
+ *
+ * Constants :
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
+dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
+zero = 0.0,
+one = 1.0,
+two = 2.0,
+two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
+huge = 1.0e300,
+tiny = 1.0e-300,
+ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
+L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
+L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
+L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
+L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
+L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
+P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
+P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
+P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
+P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
+P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
+lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
+lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
+lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
+ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
+cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
+cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
+cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
+ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
+ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
+ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
+
+double
+pow(double x, double y)
+{
+ double z,ax,z_h,z_l,p_h,p_l;
+ double y1,t1,t2,r,s,t,u,v,w;
+ int32_t i,j,k,yisint,n;
+ int32_t hx,hy,ix,iy;
+ uint32_t lx,ly;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hy,ly,y);
+ ix = hx&0x7fffffff; iy = hy&0x7fffffff;
+
+ /* y==zero: x**0 = 1 */
+ if((iy|ly)==0) return one;
+
+ /* +-NaN return x+y */
+ if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
+ iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
+ return x+y;
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if(hx<0) {
+ if(iy>=0x43400000) yisint = 2; /* even integer y */
+ else if(iy>=0x3ff00000) {
+ k = (iy>>20)-0x3ff; /* exponent */
+ if(k>20) {
+ j = ly>>(52-k);
+ if((j<<(52-k))==ly) yisint = 2-(j&1);
+ } else if(ly==0) {
+ j = iy>>(20-k);
+ if((j<<(20-k))==iy) yisint = 2-(j&1);
+ }
+ }
+ }
+
+ /* special value of y */
+ if(ly==0) {
+ if (iy==0x7ff00000) { /* y is +-inf */
+ if(((ix-0x3ff00000)|lx)==0)
+ return y - y; /* inf**+-1 is NaN */
+ else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
+ return (hy>=0)? y: zero;
+ else /* (|x|<1)**-,+inf = inf,0 */
+ return (hy<0)?-y: zero;
+ }
+ if(iy==0x3ff00000) { /* y is +-1 */
+ if(hy<0) return one/x; else return x;
+ }
+ if(hy==0x40000000) return x*x; /* y is 2 */
+ if(hy==0x3fe00000) { /* y is 0.5 */
+ if(hx>=0) /* x >= +0 */
+ return sqrt(x);
+ }
+ }
+
+ ax = fabs(x);
+ /* special value of x */
+ if(lx==0) {
+ if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
+ z = ax; /*x is +-0,+-inf,+-1*/
+ if(hy<0) z = one/z; /* z = (1/|x|) */
+ if(hx<0) {
+ if(((ix-0x3ff00000)|yisint)==0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if(yisint==1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+ }
+
+ /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
+ n = (hx>>31)+1;
+ but ANSI C says a right shift of a signed negative quantity is
+ implementation defined. */
+ n = ((uint32_t)hx>>31)-1;
+
+ /* (x<0)**(non-int) is NaN */
+ if((n|yisint)==0) return (x-x)/(x-x);
+
+ s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
+
+ /* |y| is huge */
+ if(iy>0x41e00000) { /* if |y| > 2**31 */
+ if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
+ if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
+ if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
+ }
+ /* over/underflow if x is not close to one */
+ if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
+ if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax-one; /* t has 20 trailing zeros */
+ w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
+ u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
+ v = t*ivln2_l-w*ivln2;
+ t1 = u+v;
+ SET_LOW_WORD(t1,0);
+ t2 = v-(t1-u);
+ } else {
+ double ss,s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+ if(ix<0x00100000)
+ {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
+ n += ((ix)>>20)-0x3ff;
+ j = ix&0x000fffff;
+ /* determine interval */
+ ix = j|0x3ff00000; /* normalize ix */
+ if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
+ else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
+ else {k=0;n+=1;ix -= 0x00100000;}
+ SET_HIGH_WORD(ax,ix);
+
+ /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = one/(ax+bp[k]);
+ ss = u*v;
+ s_h = ss;
+ SET_LOW_WORD(s_h,0);
+ /* t_h=ax+bp[k] High */
+ t_h = zero;
+ SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+ /* compute log(ax) */
+ s2 = ss*ss;
+ r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+ r += s_l*(s_h+ss);
+ s2 = s_h*s_h;
+ t_h = 3.0+s2+r;
+ SET_LOW_WORD(t_h,0);
+ t_l = r-((t_h-3.0)-s2);
+ /* u+v = ss*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h+t_l*ss;
+ /* 2/(3log2)*(ss+...) */
+ p_h = u+v;
+ SET_LOW_WORD(p_h,0);
+ p_l = v-(p_h-u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h+p_l*cp+dp_l[k];
+ /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (double)n;
+ t1 = (((z_h+z_l)+dp_h[k])+t);
+ SET_LOW_WORD(t1,0);
+ t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ y1 = y;
+ SET_LOW_WORD(y1,0);
+ p_l = (y-y1)*t1+y*t2;
+ p_h = y1*t1;
+ z = p_l+p_h;
+ EXTRACT_WORDS(j,i,z);
+ if (j>=0x40900000) { /* z >= 1024 */
+ if(((j-0x40900000)|i)!=0) /* if z > 1024 */
+ return s*huge*huge; /* overflow */
+ else {
+ if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
+ }
+ } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
+ if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
+ return s*tiny*tiny; /* underflow */
+ else {
+ if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
+ }
+ }
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j&0x7fffffff;
+ k = (i>>20)-0x3ff;
+ n = 0;
+ if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j+(0x00100000>>(k+1));
+ k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
+ t = zero;
+ SET_HIGH_WORD(t,n&~(0x000fffff>>k));
+ n = ((n&0x000fffff)|0x00100000)>>(20-k);
+ if(j<0) n = -n;
+ p_h -= t;
+ }
+ t = p_l+p_h;
+ SET_LOW_WORD(t,0);
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2+t*lg2_l;
+ z = u+v;
+ w = v-(z-u);
+ t = z*z;
+ t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ r = (z*t1)/(t1-two)-(w+z*w);
+ z = one-(r-z);
+ GET_HIGH_WORD(j,z);
+ j += (n<<20);
+ if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
+ else SET_HIGH_WORD(z,j);
+ return s*z;
+}
diff --git a/05/musl-0.6.0/src/math/e_powf.c b/05/musl-0.6.0/src/math/e_powf.c
new file mode 100644
index 0000000..ae61c24
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_powf.c
@@ -0,0 +1,243 @@
+/* e_powf.c -- float version of e_pow.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+bp[] = {1.0, 1.5,},
+dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
+dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
+zero = 0.0,
+one = 1.0,
+two = 2.0,
+two24 = 16777216.0, /* 0x4b800000 */
+huge = 1.0e30,
+tiny = 1.0e-30,
+ /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+L1 = 6.0000002384e-01, /* 0x3f19999a */
+L2 = 4.2857143283e-01, /* 0x3edb6db7 */
+L3 = 3.3333334327e-01, /* 0x3eaaaaab */
+L4 = 2.7272811532e-01, /* 0x3e8ba305 */
+L5 = 2.3066075146e-01, /* 0x3e6c3255 */
+L6 = 2.0697501302e-01, /* 0x3e53f142 */
+P1 = 1.6666667163e-01, /* 0x3e2aaaab */
+P2 = -2.7777778450e-03, /* 0xbb360b61 */
+P3 = 6.6137559770e-05, /* 0x388ab355 */
+P4 = -1.6533901999e-06, /* 0xb5ddea0e */
+P5 = 4.1381369442e-08, /* 0x3331bb4c */
+lg2 = 6.9314718246e-01, /* 0x3f317218 */
+lg2_h = 6.93145752e-01, /* 0x3f317200 */
+lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
+ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
+cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
+cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
+cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
+ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
+ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
+ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
+
+float
+powf(float x, float y)
+{
+ float z,ax,z_h,z_l,p_h,p_l;
+ float y1,t1,t2,r,s,sn,t,u,v,w;
+ int32_t i,j,k,yisint,n;
+ int32_t hx,hy,ix,iy,is;
+
+ GET_FLOAT_WORD(hx,x);
+ GET_FLOAT_WORD(hy,y);
+ ix = hx&0x7fffffff; iy = hy&0x7fffffff;
+
+ /* y==zero: x**0 = 1 */
+ if(iy==0) return one;
+
+ /* +-NaN return x+y */
+ if(ix > 0x7f800000 ||
+ iy > 0x7f800000)
+ return x+y;
+
+ /* determine if y is an odd int when x < 0
+ * yisint = 0 ... y is not an integer
+ * yisint = 1 ... y is an odd int
+ * yisint = 2 ... y is an even int
+ */
+ yisint = 0;
+ if(hx<0) {
+ if(iy>=0x4b800000) yisint = 2; /* even integer y */
+ else if(iy>=0x3f800000) {
+ k = (iy>>23)-0x7f; /* exponent */
+ j = iy>>(23-k);
+ if((j<<(23-k))==iy) yisint = 2-(j&1);
+ }
+ }
+
+ /* special value of y */
+ if (iy==0x7f800000) { /* y is +-inf */
+ if (ix==0x3f800000)
+ return y - y; /* inf**+-1 is NaN */
+ else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
+ return (hy>=0)? y: zero;
+ else /* (|x|<1)**-,+inf = inf,0 */
+ return (hy<0)?-y: zero;
+ }
+ if(iy==0x3f800000) { /* y is +-1 */
+ if(hy<0) return one/x; else return x;
+ }
+ if(hy==0x40000000) return x*x; /* y is 2 */
+ if(hy==0x3f000000) { /* y is 0.5 */
+ if(hx>=0) /* x >= +0 */
+ return sqrtf(x);
+ }
+
+ ax = fabsf(x);
+ /* special value of x */
+ if(ix==0x7f800000||ix==0||ix==0x3f800000){
+ z = ax; /*x is +-0,+-inf,+-1*/
+ if(hy<0) z = one/z; /* z = (1/|x|) */
+ if(hx<0) {
+ if(((ix-0x3f800000)|yisint)==0) {
+ z = (z-z)/(z-z); /* (-1)**non-int is NaN */
+ } else if(yisint==1)
+ z = -z; /* (x<0)**odd = -(|x|**odd) */
+ }
+ return z;
+ }
+
+ n = ((uint32_t)hx>>31)-1;
+
+ /* (x<0)**(non-int) is NaN */
+ if((n|yisint)==0) return (x-x)/(x-x);
+
+ sn = one; /* s (sign of result -ve**odd) = -1 else = 1 */
+ if((n|(yisint-1))==0) sn = -one;/* (-ve)**(odd int) */
+
+ /* |y| is huge */
+ if(iy>0x4d000000) { /* if |y| > 2**27 */
+ /* over/underflow if x is not close to one */
+ if(ix<0x3f7ffff8) return (hy<0)? sn*huge*huge:sn*tiny*tiny;
+ if(ix>0x3f800007) return (hy>0)? sn*huge*huge:sn*tiny*tiny;
+ /* now |1-x| is tiny <= 2**-20, suffice to compute
+ log(x) by x-x^2/2+x^3/3-x^4/4 */
+ t = ax-1; /* t has 20 trailing zeros */
+ w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
+ u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
+ v = t*ivln2_l-w*ivln2;
+ t1 = u+v;
+ GET_FLOAT_WORD(is,t1);
+ SET_FLOAT_WORD(t1,is&0xfffff000);
+ t2 = v-(t1-u);
+ } else {
+ float s2,s_h,s_l,t_h,t_l;
+ n = 0;
+ /* take care subnormal number */
+ if(ix<0x00800000)
+ {ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
+ n += ((ix)>>23)-0x7f;
+ j = ix&0x007fffff;
+ /* determine interval */
+ ix = j|0x3f800000; /* normalize ix */
+ if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
+ else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
+ else {k=0;n+=1;ix -= 0x00800000;}
+ SET_FLOAT_WORD(ax,ix);
+
+ /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+ u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+ v = one/(ax+bp[k]);
+ s = u*v;
+ s_h = s;
+ GET_FLOAT_WORD(is,s_h);
+ SET_FLOAT_WORD(s_h,is&0xfffff000);
+ /* t_h=ax+bp[k] High */
+ is = ((ix>>1)&0xfffff000)|0x20000000;
+ SET_FLOAT_WORD(t_h,is+0x00400000+(k<<21));
+ t_l = ax - (t_h-bp[k]);
+ s_l = v*((u-s_h*t_h)-s_h*t_l);
+ /* compute log(ax) */
+ s2 = s*s;
+ r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
+ r += s_l*(s_h+s);
+ s2 = s_h*s_h;
+ t_h = (float)3.0+s2+r;
+ GET_FLOAT_WORD(is,t_h);
+ SET_FLOAT_WORD(t_h,is&0xfffff000);
+ t_l = r-((t_h-(float)3.0)-s2);
+ /* u+v = s*(1+...) */
+ u = s_h*t_h;
+ v = s_l*t_h+t_l*s;
+ /* 2/(3log2)*(s+...) */
+ p_h = u+v;
+ GET_FLOAT_WORD(is,p_h);
+ SET_FLOAT_WORD(p_h,is&0xfffff000);
+ p_l = v-(p_h-u);
+ z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
+ z_l = cp_l*p_h+p_l*cp+dp_l[k];
+ /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+ t = (float)n;
+ t1 = (((z_h+z_l)+dp_h[k])+t);
+ GET_FLOAT_WORD(is,t1);
+ SET_FLOAT_WORD(t1,is&0xfffff000);
+ t2 = z_l-(((t1-t)-dp_h[k])-z_h);
+ }
+
+ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+ GET_FLOAT_WORD(is,y);
+ SET_FLOAT_WORD(y1,is&0xfffff000);
+ p_l = (y-y1)*t1+y*t2;
+ p_h = y1*t1;
+ z = p_l+p_h;
+ GET_FLOAT_WORD(j,z);
+ if (j>0x43000000) /* if z > 128 */
+ return sn*huge*huge; /* overflow */
+ else if (j==0x43000000) { /* if z == 128 */
+ if(p_l+ovt>z-p_h) return sn*huge*huge; /* overflow */
+ }
+ else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */
+ return sn*tiny*tiny; /* underflow */
+ else if (j==0xc3160000){ /* z == -150 */
+ if(p_l<=z-p_h) return sn*tiny*tiny; /* underflow */
+ }
+ /*
+ * compute 2**(p_h+p_l)
+ */
+ i = j&0x7fffffff;
+ k = (i>>23)-0x7f;
+ n = 0;
+ if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
+ n = j+(0x00800000>>(k+1));
+ k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
+ SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
+ n = ((n&0x007fffff)|0x00800000)>>(23-k);
+ if(j<0) n = -n;
+ p_h -= t;
+ }
+ t = p_l+p_h;
+ GET_FLOAT_WORD(is,t);
+ SET_FLOAT_WORD(t,is&0xffff8000);
+ u = t*lg2_h;
+ v = (p_l-(t-p_h))*lg2+t*lg2_l;
+ z = u+v;
+ w = v-(z-u);
+ t = z*z;
+ t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ r = (z*t1)/(t1-two)-(w+z*w);
+ z = one-(r-z);
+ GET_FLOAT_WORD(j,z);
+ j += (n<<23);
+ if((j>>23)<=0) z = scalbnf(z,n); /* subnormal output */
+ else SET_FLOAT_WORD(z,j);
+ return sn*z;
+}
diff --git a/05/musl-0.6.0/src/math/e_rem_pio2.c b/05/musl-0.6.0/src/math/e_rem_pio2.c
new file mode 100644
index 0000000..9eee36a
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_rem_pio2.c
@@ -0,0 +1,163 @@
+
+/* @(#)e_rem_pio2.c 1.4 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+
+/* __ieee754_rem_pio2(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __kernel_rem_pio2()
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ */
+static const int32_t two_over_pi[] = {
+0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
+0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
+0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
+0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
+0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
+0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
+0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
+0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
+0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
+0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
+};
+
+static const int32_t npio2_hw[] = {
+0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
+0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
+0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
+0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
+0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
+0x404858EB, 0x404921FB,
+};
+
+/*
+ * invpio2: 53 bits of 2/pi
+ * pio2_1: first 33 bit of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ * pio2_2: second 33 bit of pi/2
+ * pio2_2t: pi/2 - (pio2_1+pio2_2)
+ * pio2_3: third 33 bit of pi/2
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+static const double
+zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
+pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
+pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
+pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
+pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
+pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+
+int32_t __ieee754_rem_pio2(double x, double *y)
+{
+ double z,w,t,r,fn;
+ double tx[3];
+ int32_t e0,i,j,nx,n,ix,hx;
+ uint32_t low;
+
+ GET_HIGH_WORD(hx,x); /* high word of x */
+ ix = hx&0x7fffffff;
+ if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
+ {y[0] = x; y[1] = 0; return 0;}
+ if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
+ if(hx>0) {
+ z = x - pio2_1;
+ if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
+ y[0] = z - pio2_1t;
+ y[1] = (z-y[0])-pio2_1t;
+ } else { /* near pi/2, use 33+33+53 bit pi */
+ z -= pio2_2;
+ y[0] = z - pio2_2t;
+ y[1] = (z-y[0])-pio2_2t;
+ }
+ return 1;
+ } else { /* negative x */
+ z = x + pio2_1;
+ if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
+ y[0] = z + pio2_1t;
+ y[1] = (z-y[0])+pio2_1t;
+ } else { /* near pi/2, use 33+33+53 bit pi */
+ z += pio2_2;
+ y[0] = z + pio2_2t;
+ y[1] = (z-y[0])+pio2_2t;
+ }
+ return -1;
+ }
+ }
+ if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
+ t = fabs(x);
+ n = (int32_t) (t*invpio2+half);
+ fn = (double)n;
+ r = t-fn*pio2_1;
+ w = fn*pio2_1t; /* 1st round good to 85 bit */
+ if(n<32&&ix!=npio2_hw[n-1]) {
+ y[0] = r-w; /* quick check no cancellation */
+ } else {
+ uint32_t high;
+ j = ix>>20;
+ y[0] = r-w;
+ GET_HIGH_WORD(high,y[0]);
+ i = j-((high>>20)&0x7ff);
+ if(i>16) { /* 2nd iteration needed, good to 118 */
+ t = r;
+ w = fn*pio2_2;
+ r = t-w;
+ w = fn*pio2_2t-((t-r)-w);
+ y[0] = r-w;
+ GET_HIGH_WORD(high,y[0]);
+ i = j-((high>>20)&0x7ff);
+ if(i>49) { /* 3rd iteration need, 151 bits acc */
+ t = r; /* will cover all possible cases */
+ w = fn*pio2_3;
+ r = t-w;
+ w = fn*pio2_3t-((t-r)-w);
+ y[0] = r-w;
+ }
+ }
+ }
+ y[1] = (r-y[0])-w;
+ if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+ else return n;
+ }
+ /*
+ * all other (large) arguments
+ */
+ if(ix>=0x7ff00000) { /* x is inf or NaN */
+ y[0]=y[1]=x-x; return 0;
+ }
+ /* set z = scalbn(|x|,ilogb(x)-23) */
+ GET_LOW_WORD(low,x);
+ e0 = (ix>>20)-1046; /* e0 = ilogb(z)-23; */
+ INSERT_WORDS(z, ix - ((int32_t)(e0<<20)), low);
+ for(i=0;i<2;i++) {
+ tx[i] = (double)((int32_t)(z));
+ z = (z-tx[i])*two24;
+ }
+ tx[2] = z;
+ nx = 3;
+ while(tx[nx-1]==zero) nx--; /* skip zero term */
+ n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
+ if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+ return n;
+}
diff --git a/05/musl-0.6.0/src/math/e_rem_pio2f.c b/05/musl-0.6.0/src/math/e_rem_pio2f.c
new file mode 100644
index 0000000..4992ea0
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_rem_pio2f.c
@@ -0,0 +1,175 @@
+/* e_rem_pio2f.c -- float version of e_rem_pio2.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __ieee754_rem_pio2f(x,y)
+ *
+ * return the remainder of x rem pi/2 in y[0]+y[1]
+ * use __kernel_rem_pio2f()
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+/*
+ * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
+ */
+static const int32_t two_over_pi[] = {
+0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
+0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
+0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
+0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
+0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
+0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
+0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
+0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
+0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
+0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
+0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
+0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
+0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
+0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
+0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
+0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
+0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
+0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
+0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
+0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
+0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
+0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
+};
+
+/* This array is like the one in e_rem_pio2.c, but the numbers are
+ single precision and the last 8 bits are forced to 0. */
+static const int32_t npio2_hw[] = {
+0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
+0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
+0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
+0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
+0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
+0x4242c700, 0x42490f00
+};
+
+/*
+ * invpio2: 24 bits of 2/pi
+ * pio2_1: first 17 bit of pi/2
+ * pio2_1t: pi/2 - pio2_1
+ * pio2_2: second 17 bit of pi/2
+ * pio2_2t: pi/2 - (pio2_1+pio2_2)
+ * pio2_3: third 17 bit of pi/2
+ * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
+ */
+
+static const float
+zero = 0.0000000000e+00, /* 0x00000000 */
+half = 5.0000000000e-01, /* 0x3f000000 */
+two8 = 2.5600000000e+02, /* 0x43800000 */
+invpio2 = 6.3661980629e-01, /* 0x3f22f984 */
+pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */
+pio2_1t = 1.0804334124e-05, /* 0x37354443 */
+pio2_2 = 1.0804273188e-05, /* 0x37354400 */
+pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */
+pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */
+pio2_3t = 6.1232342629e-17; /* 0x248d3132 */
+
+int32_t __ieee754_rem_pio2f(float x, float *y)
+{
+ float z,w,t,r,fn;
+ float tx[3];
+ int32_t e0,i,j,nx,n,ix,hx;
+
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
+ {y[0] = x; y[1] = 0; return 0;}
+ if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */
+ if(hx>0) {
+ z = x - pio2_1;
+ if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
+ y[0] = z - pio2_1t;
+ y[1] = (z-y[0])-pio2_1t;
+ } else { /* near pi/2, use 24+24+24 bit pi */
+ z -= pio2_2;
+ y[0] = z - pio2_2t;
+ y[1] = (z-y[0])-pio2_2t;
+ }
+ return 1;
+ } else { /* negative x */
+ z = x + pio2_1;
+ if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
+ y[0] = z + pio2_1t;
+ y[1] = (z-y[0])+pio2_1t;
+ } else { /* near pi/2, use 24+24+24 bit pi */
+ z += pio2_2;
+ y[0] = z + pio2_2t;
+ y[1] = (z-y[0])+pio2_2t;
+ }
+ return -1;
+ }
+ }
+ if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
+ t = fabsf(x);
+ n = (int32_t) (t*invpio2+half);
+ fn = (float)n;
+ r = t-fn*pio2_1;
+ w = fn*pio2_1t; /* 1st round good to 40 bit */
+ if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) {
+ y[0] = r-w; /* quick check no cancellation */
+ } else {
+ uint32_t high;
+ j = ix>>23;
+ y[0] = r-w;
+ GET_FLOAT_WORD(high,y[0]);
+ i = j-((high>>23)&0xff);
+ if(i>8) { /* 2nd iteration needed, good to 57 */
+ t = r;
+ w = fn*pio2_2;
+ r = t-w;
+ w = fn*pio2_2t-((t-r)-w);
+ y[0] = r-w;
+ GET_FLOAT_WORD(high,y[0]);
+ i = j-((high>>23)&0xff);
+ if(i>25) { /* 3rd iteration need, 74 bits acc */
+ t = r; /* will cover all possible cases */
+ w = fn*pio2_3;
+ r = t-w;
+ w = fn*pio2_3t-((t-r)-w);
+ y[0] = r-w;
+ }
+ }
+ }
+ y[1] = (r-y[0])-w;
+ if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+ else return n;
+ }
+ /*
+ * all other (large) arguments
+ */
+ if(ix>=0x7f800000) { /* x is inf or NaN */
+ y[0]=y[1]=x-x; return 0;
+ }
+ /* set z = scalbn(|x|,ilogb(x)-7) */
+ e0 = (ix>>23)-134; /* e0 = ilogb(z)-7; */
+ SET_FLOAT_WORD(z, ix - ((int32_t)(e0<<23)));
+ for(i=0;i<2;i++) {
+ tx[i] = (float)((int32_t)(z));
+ z = (z-tx[i])*two8;
+ }
+ tx[2] = z;
+ nx = 3;
+ while(tx[nx-1]==zero) nx--; /* skip zero term */
+ n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
+ if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
+ return n;
+}
diff --git a/05/musl-0.6.0/src/math/e_remainder.c b/05/musl-0.6.0/src/math/e_remainder.c
new file mode 100644
index 0000000..9cb5691
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_remainder.c
@@ -0,0 +1,69 @@
+
+/* @(#)e_remainder.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* remainder(x,p)
+ * Return :
+ * returns x REM p = x - [x/p]*p as if in infinite
+ * precise arithmetic, where [x/p] is the (infinite bit)
+ * integer nearest x/p (in half way case choose the even one).
+ * Method :
+ * Based on fmod() return x-[x/p]chopped*p exactlp.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double zero = 0.0;
+
+
+double
+remainder(double x, double p)
+{
+ int32_t hx,hp;
+ uint32_t sx,lx,lp;
+ double p_half;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hp,lp,p);
+ sx = hx&0x80000000;
+ hp &= 0x7fffffff;
+ hx &= 0x7fffffff;
+
+ /* purge off exception values */
+ if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
+ if((hx>=0x7ff00000)|| /* x not finite */
+ ((hp>=0x7ff00000)&& /* p is NaN */
+ (((hp-0x7ff00000)|lp)!=0)))
+ return (x*p)/(x*p);
+
+
+ if (hp<=0x7fdfffff) x = fmod(x,p+p); /* now x < 2p */
+ if (((hx-hp)|(lx-lp))==0) return zero*x;
+ x = fabs(x);
+ p = fabs(p);
+ if (hp<0x00200000) {
+ if(x+x>p) {
+ x-=p;
+ if(x+x>=p) x -= p;
+ }
+ } else {
+ p_half = 0.5*p;
+ if(x>p_half) {
+ x-=p;
+ if(x>=p_half) x -= p;
+ }
+ }
+ GET_HIGH_WORD(hx,x);
+ SET_HIGH_WORD(x,hx^sx);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/e_remainderf.c b/05/musl-0.6.0/src/math/e_remainderf.c
new file mode 100644
index 0000000..c292367
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_remainderf.c
@@ -0,0 +1,61 @@
+/* e_remainderf.c -- float version of e_remainder.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float zero = 0.0;
+
+
+float
+remainderf(float x, float p)
+{
+ int32_t hx,hp;
+ uint32_t sx;
+ float p_half;
+
+ GET_FLOAT_WORD(hx,x);
+ GET_FLOAT_WORD(hp,p);
+ sx = hx&0x80000000;
+ hp &= 0x7fffffff;
+ hx &= 0x7fffffff;
+
+ /* purge off exception values */
+ if(hp==0) return (x*p)/(x*p); /* p = 0 */
+ if((hx>=0x7f800000)|| /* x not finite */
+ ((hp>0x7f800000))) /* p is NaN */
+ return (x*p)/(x*p);
+
+
+ if (hp<=0x7effffff) x = fmodf(x,p+p); /* now x < 2p */
+ if ((hx-hp)==0) return zero*x;
+ x = fabsf(x);
+ p = fabsf(p);
+ if (hp<0x01000000) {
+ if(x+x>p) {
+ x-=p;
+ if(x+x>=p) x -= p;
+ }
+ } else {
+ p_half = (float)0.5*p;
+ if(x>p_half) {
+ x-=p;
+ if(x>=p_half) x -= p;
+ }
+ }
+ GET_FLOAT_WORD(hx,x);
+ SET_FLOAT_WORD(x,hx^sx);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/e_scalb.c b/05/musl-0.6.0/src/math/e_scalb.c
new file mode 100644
index 0000000..cee2b44
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_scalb.c
@@ -0,0 +1,35 @@
+
+/* @(#)e_scalb.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * scalb(x, fn) is provide for
+ * passing various standard test suite. One
+ * should use scalbn() instead.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+scalb(double x, double fn)
+{
+ if (isnan(x)||isnan(fn)) return x*fn;
+ if (!isfinite(fn)) {
+ if(fn>0.0) return x*fn;
+ else return x/(-fn);
+ }
+ if (rint(fn)!=fn) return (fn-fn)/(fn-fn);
+ if ( fn > 65000.0) return scalbn(x, 65000);
+ if (-fn > 65000.0) return scalbn(x,-65000);
+ return scalbn(x,(int)fn);
+}
diff --git a/05/musl-0.6.0/src/math/e_scalbf.c b/05/musl-0.6.0/src/math/e_scalbf.c
new file mode 100644
index 0000000..de7d7f6
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_scalbf.c
@@ -0,0 +1,31 @@
+/* e_scalbf.c -- float version of e_scalb.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+scalbf(float x, float fn)
+{
+ if (isnan(x)||isnan(fn)) return x*fn;
+ if (!isfinite(fn)) {
+ if(fn>(float)0.0) return x*fn;
+ else return x/(-fn);
+ }
+ if (rintf(fn)!=fn) return (fn-fn)/(fn-fn);
+ if ( fn > (float)65000.0) return scalbnf(x, 65000);
+ if (-fn > (float)65000.0) return scalbnf(x,-65000);
+ return scalbnf(x,(int)fn);
+}
diff --git a/05/musl-0.6.0/src/math/e_sinh.c b/05/musl-0.6.0/src/math/e_sinh.c
new file mode 100644
index 0000000..3a57427
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_sinh.c
@@ -0,0 +1,75 @@
+
+/* @(#)e_sinh.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* sinh(x)
+ * Method :
+ * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+ * 1. Replace x by |x| (sinh(-x) = -sinh(x)).
+ * 2.
+ * E + E/(E+1)
+ * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
+ * 2
+ *
+ * 22 <= x <= lnovft : sinh(x) := exp(x)/2
+ * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
+ * ln2ovft < x : sinh(x) := x*shuge (overflow)
+ *
+ * Special cases:
+ * sinh(x) is |x| if x is +INF, -INF, or NaN.
+ * only sinh(0)=0 is exact for finite x.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one = 1.0, shuge = 1.0e307;
+
+double
+sinh(double x)
+{
+ double t,w,h;
+ int32_t ix,jx;
+ uint32_t lx;
+
+ /* High word of |x|. */
+ GET_HIGH_WORD(jx,x);
+ ix = jx&0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7ff00000) return x+x;
+
+ h = 0.5;
+ if (jx<0) h = -h;
+ /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
+ if (ix < 0x40360000) { /* |x|<22 */
+ if (ix<0x3e300000) /* |x|<2**-28 */
+ if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+ t = expm1(fabs(x));
+ if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
+ return h*(t+t/(t+one));
+ }
+
+ /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
+ if (ix < 0x40862E42) return h*exp(fabs(x));
+
+ /* |x| in [log(maxdouble), overflowthresold] */
+ GET_LOW_WORD(lx,x);
+ if (ix<0x408633CE || ((ix==0x408633ce)&&(lx<=(uint32_t)0x8fb9f87d))) {
+ w = exp(0.5*fabs(x));
+ t = h*w;
+ return t*w;
+ }
+
+ /* |x| > overflowthresold, sinh(x) overflow */
+ return x*shuge;
+}
diff --git a/05/musl-0.6.0/src/math/e_sinhf.c b/05/musl-0.6.0/src/math/e_sinhf.c
new file mode 100644
index 0000000..fe60608
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_sinhf.c
@@ -0,0 +1,56 @@
+/* e_sinhf.c -- float version of e_sinh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one = 1.0, shuge = 1.0e37;
+
+float
+sinhf(float x)
+{
+ float t,w,h;
+ int32_t ix,jx;
+
+ GET_FLOAT_WORD(jx,x);
+ ix = jx&0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7f800000) return x+x;
+
+ h = 0.5;
+ if (jx<0) h = -h;
+ /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
+ if (ix < 0x41b00000) { /* |x|<22 */
+ if (ix<0x31800000) /* |x|<2**-28 */
+ if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
+ t = expm1f(fabsf(x));
+ if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
+ return h*(t+t/(t+one));
+ }
+
+ /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
+ if (ix < 0x42b17180) return h*expf(fabsf(x));
+
+ /* |x| in [log(maxdouble), overflowthresold] */
+ if (ix<=0x42b2d4fc) {
+ w = expf((float)0.5*fabsf(x));
+ t = h*w;
+ return t*w;
+ }
+
+ /* |x| > overflowthresold, sinh(x) overflow */
+ return x*shuge;
+}
diff --git a/05/musl-0.6.0/src/math/e_sqrt.c b/05/musl-0.6.0/src/math/e_sqrt.c
new file mode 100644
index 0000000..2bc6874
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_sqrt.c
@@ -0,0 +1,442 @@
+
+/* @(#)e_sqrt.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* sqrt(x)
+ * Return correctly rounded sqrt.
+ * ------------------------------------------
+ * | Use the hardware sqrt if you have one |
+ * ------------------------------------------
+ * Method:
+ * Bit by bit method using integer arithmetic. (Slow, but portable)
+ * 1. Normalization
+ * Scale x to y in [1,4) with even powers of 2:
+ * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
+ * sqrt(x) = 2^k * sqrt(y)
+ * 2. Bit by bit computation
+ * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
+ * i 0
+ * i+1 2
+ * s = 2*q , and y = 2 * ( y - q ). (1)
+ * i i i i
+ *
+ * To compute q from q , one checks whether
+ * i+1 i
+ *
+ * -(i+1) 2
+ * (q + 2 ) <= y. (2)
+ * i
+ * -(i+1)
+ * If (2) is false, then q = q ; otherwise q = q + 2 .
+ * i+1 i i+1 i
+ *
+ * With some algebric manipulation, it is not difficult to see
+ * that (2) is equivalent to
+ * -(i+1)
+ * s + 2 <= y (3)
+ * i i
+ *
+ * The advantage of (3) is that s and y can be computed by
+ * i i
+ * the following recurrence formula:
+ * if (3) is false
+ *
+ * s = s , y = y ; (4)
+ * i+1 i i+1 i
+ *
+ * otherwise,
+ * -i -(i+1)
+ * s = s + 2 , y = y - s - 2 (5)
+ * i+1 i i+1 i i
+ *
+ * One may easily use induction to prove (4) and (5).
+ * Note. Since the left hand side of (3) contain only i+2 bits,
+ * it does not necessary to do a full (53-bit) comparison
+ * in (3).
+ * 3. Final rounding
+ * After generating the 53 bits result, we compute one more bit.
+ * Together with the remainder, we can decide whether the
+ * result is exact, bigger than 1/2ulp, or less than 1/2ulp
+ * (it will never equal to 1/2ulp).
+ * The rounding mode can be detected by checking whether
+ * huge + tiny is equal to huge, and whether huge - tiny is
+ * equal to huge for some floating point number "huge" and "tiny".
+ *
+ * Special cases:
+ * sqrt(+-0) = +-0 ... exact
+ * sqrt(inf) = inf
+ * sqrt(-ve) = NaN ... with invalid signal
+ * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
+ *
+ * Other methods : see the appended file at the end of the program below.
+ *---------------
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one = 1.0, tiny=1.0e-300;
+
+double
+sqrt(double x)
+{
+ double z;
+ int32_t sign = (int)0x80000000;
+ int32_t ix0,s0,q,m,t,i;
+ uint32_t r,t1,s1,ix1,q1;
+
+ EXTRACT_WORDS(ix0,ix1,x);
+
+ /* take care of Inf and NaN */
+ if((ix0&0x7ff00000)==0x7ff00000) {
+ return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
+ sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if(ix0<=0) {
+ if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
+ else if(ix0<0)
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
+ }
+ /* normalize x */
+ m = (ix0>>20);
+ if(m==0) { /* subnormal x */
+ while(ix0==0) {
+ m -= 21;
+ ix0 |= (ix1>>11); ix1 <<= 21;
+ }
+ for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
+ m -= i-1;
+ ix0 |= (ix1>>(32-i));
+ ix1 <<= i;
+ }
+ m -= 1023; /* unbias exponent */
+ ix0 = (ix0&0x000fffff)|0x00100000;
+ if(m&1){ /* odd m, double x to make it even */
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ }
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
+ r = 0x00200000; /* r = moving bit from right to left */
+
+ while(r!=0) {
+ t = s0+r;
+ if(t<=ix0) {
+ s0 = t+r;
+ ix0 -= t;
+ q += r;
+ }
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ r>>=1;
+ }
+
+ r = sign;
+ while(r!=0) {
+ t1 = s1+r;
+ t = s0;
+ if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
+ s1 = t1+r;
+ if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
+ ix0 -= t;
+ if (ix1 < t1) ix0 -= 1;
+ ix1 -= t1;
+ q1 += r;
+ }
+ ix0 += ix0 + ((ix1&sign)>>31);
+ ix1 += ix1;
+ r>>=1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if((ix0|ix1)!=0) {
+ z = one-tiny; /* trigger inexact flag */
+ if (z>=one) {
+ z = one+tiny;
+ if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;}
+ else if (z>one) {
+ if (q1==(uint32_t)0xfffffffe) q+=1;
+ q1+=2;
+ } else
+ q1 += (q1&1);
+ }
+ }
+ ix0 = (q>>1)+0x3fe00000;
+ ix1 = q1>>1;
+ if ((q&1)==1) ix1 |= sign;
+ ix0 += (m <<20);
+ INSERT_WORDS(z,ix0,ix1);
+ return z;
+}
+
+/*
+Other methods (use floating-point arithmetic)
+-------------
+(This is a copy of a drafted paper by Prof W. Kahan
+and K.C. Ng, written in May, 1986)
+
+ Two algorithms are given here to implement sqrt(x)
+ (IEEE double precision arithmetic) in software.
+ Both supply sqrt(x) correctly rounded. The first algorithm (in
+ Section A) uses newton iterations and involves four divisions.
+ The second one uses reciproot iterations to avoid division, but
+ requires more multiplications. Both algorithms need the ability
+ to chop results of arithmetic operations instead of round them,
+ and the INEXACT flag to indicate when an arithmetic operation
+ is executed exactly with no roundoff error, all part of the
+ standard (IEEE 754-1985). The ability to perform shift, add,
+ subtract and logical AND operations upon 32-bit words is needed
+ too, though not part of the standard.
+
+A. sqrt(x) by Newton Iteration
+
+ (1) Initial approximation
+
+ Let x0 and x1 be the leading and the trailing 32-bit words of
+ a floating point number x (in IEEE double format) respectively
+
+ 1 11 52 ...widths
+ ------------------------------------------------------
+ x: |s| e | f |
+ ------------------------------------------------------
+ msb lsb msb lsb ...order
+
+
+ ------------------------ ------------------------
+ x0: |s| e | f1 | x1: | f2 |
+ ------------------------ ------------------------
+
+ By performing shifts and subtracts on x0 and x1 (both regarded
+ as integers), we obtain an 8-bit approximation of sqrt(x) as
+ follows.
+
+ k := (x0>>1) + 0x1ff80000;
+ y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
+ Here k is a 32-bit integer and T1[] is an integer array containing
+ correction terms. Now magically the floating value of y (y's
+ leading 32-bit word is y0, the value of its trailing word is 0)
+ approximates sqrt(x) to almost 8-bit.
+
+ Value of T1:
+ static int T1[32]= {
+ 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
+ 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
+ 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
+ 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
+
+ (2) Iterative refinement
+
+ Apply Heron's rule three times to y, we have y approximates
+ sqrt(x) to within 1 ulp (Unit in the Last Place):
+
+ y := (y+x/y)/2 ... almost 17 sig. bits
+ y := (y+x/y)/2 ... almost 35 sig. bits
+ y := y-(y-x/y)/2 ... within 1 ulp
+
+
+ Remark 1.
+ Another way to improve y to within 1 ulp is:
+
+ y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
+ y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
+
+ 2
+ (x-y )*y
+ y := y + 2* ---------- ...within 1 ulp
+ 2
+ 3y + x
+
+
+ This formula has one division fewer than the one above; however,
+ it requires more multiplications and additions. Also x must be
+ scaled in advance to avoid spurious overflow in evaluating the
+ expression 3y*y+x. Hence it is not recommended uless division
+ is slow. If division is very slow, then one should use the
+ reciproot algorithm given in section B.
+
+ (3) Final adjustment
+
+ By twiddling y's last bit it is possible to force y to be
+ correctly rounded according to the prevailing rounding mode
+ as follows. Let r and i be copies of the rounding mode and
+ inexact flag before entering the square root program. Also we
+ use the expression y+-ulp for the next representable floating
+ numbers (up and down) of y. Note that y+-ulp = either fixed
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
+ mode.
+
+ I := FALSE; ... reset INEXACT flag I
+ R := RZ; ... set rounding mode to round-toward-zero
+ z := x/y; ... chopped quotient, possibly inexact
+ If(not I) then { ... if the quotient is exact
+ if(z=y) {
+ I := i; ... restore inexact flag
+ R := r; ... restore rounded mode
+ return sqrt(x):=y.
+ } else {
+ z := z - ulp; ... special rounding
+ }
+ }
+ i := TRUE; ... sqrt(x) is inexact
+ If (r=RN) then z=z+ulp ... rounded-to-nearest
+ If (r=RP) then { ... round-toward-+inf
+ y = y+ulp; z=z+ulp;
+ }
+ y := y+z; ... chopped sum
+ y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
+ I := i; ... restore inexact flag
+ R := r; ... restore rounded mode
+ return sqrt(x):=y.
+
+ (4) Special cases
+
+ Square root of +inf, +-0, or NaN is itself;
+ Square root of a negative number is NaN with invalid signal.
+
+
+B. sqrt(x) by Reciproot Iteration
+
+ (1) Initial approximation
+
+ Let x0 and x1 be the leading and the trailing 32-bit words of
+ a floating point number x (in IEEE double format) respectively
+ (see section A). By performing shifs and subtracts on x0 and y0,
+ we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
+
+ k := 0x5fe80000 - (x0>>1);
+ y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
+
+ Here k is a 32-bit integer and T2[] is an integer array
+ containing correction terms. Now magically the floating
+ value of y (y's leading 32-bit word is y0, the value of
+ its trailing word y1 is set to zero) approximates 1/sqrt(x)
+ to almost 7.8-bit.
+
+ Value of T2:
+ static int T2[64]= {
+ 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
+ 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
+ 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
+ 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
+ 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
+ 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
+ 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
+ 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
+
+ (2) Iterative refinement
+
+ Apply Reciproot iteration three times to y and multiply the
+ result by x to get an approximation z that matches sqrt(x)
+ to about 1 ulp. To be exact, we will have
+ -1ulp < sqrt(x)-z<1.0625ulp.
+
+ ... set rounding mode to Round-to-nearest
+ y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
+ y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
+ ... special arrangement for better accuracy
+ z := x*y ... 29 bits to sqrt(x), with z*y<1
+ z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
+
+ Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
+ (a) the term z*y in the final iteration is always less than 1;
+ (b) the error in the final result is biased upward so that
+ -1 ulp < sqrt(x) - z < 1.0625 ulp
+ instead of |sqrt(x)-z|<1.03125ulp.
+
+ (3) Final adjustment
+
+ By twiddling y's last bit it is possible to force y to be
+ correctly rounded according to the prevailing rounding mode
+ as follows. Let r and i be copies of the rounding mode and
+ inexact flag before entering the square root program. Also we
+ use the expression y+-ulp for the next representable floating
+ numbers (up and down) of y. Note that y+-ulp = either fixed
+ point y+-1, or multiply y by nextafter(1,+-inf) in chopped
+ mode.
+
+ R := RZ; ... set rounding mode to round-toward-zero
+ switch(r) {
+ case RN: ... round-to-nearest
+ if(x<= z*(z-ulp)...chopped) z = z - ulp; else
+ if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
+ break;
+ case RZ:case RM: ... round-to-zero or round-to--inf
+ R:=RP; ... reset rounding mod to round-to-+inf
+ if(x<z*z ... rounded up) z = z - ulp; else
+ if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
+ break;
+ case RP: ... round-to-+inf
+ if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
+ if(x>z*z ...chopped) z = z+ulp;
+ break;
+ }
+
+ Remark 3. The above comparisons can be done in fixed point. For
+ example, to compare x and w=z*z chopped, it suffices to compare
+ x1 and w1 (the trailing parts of x and w), regarding them as
+ two's complement integers.
+
+ ...Is z an exact square root?
+ To determine whether z is an exact square root of x, let z1 be the
+ trailing part of z, and also let x0 and x1 be the leading and
+ trailing parts of x.
+
+ If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
+ I := 1; ... Raise Inexact flag: z is not exact
+ else {
+ j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
+ k := z1 >> 26; ... get z's 25-th and 26-th
+ fraction bits
+ I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
+ }
+ R:= r ... restore rounded mode
+ return sqrt(x):=z.
+
+ If multiplication is cheaper then the foregoing red tape, the
+ Inexact flag can be evaluated by
+
+ I := i;
+ I := (z*z!=x) or I.
+
+ Note that z*z can overwrite I; this value must be sensed if it is
+ True.
+
+ Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
+ zero.
+
+ --------------------
+ z1: | f2 |
+ --------------------
+ bit 31 bit 0
+
+ Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
+ or even of logb(x) have the following relations:
+
+ -------------------------------------------------
+ bit 27,26 of z1 bit 1,0 of x1 logb(x)
+ -------------------------------------------------
+ 00 00 odd and even
+ 01 01 even
+ 10 10 odd
+ 10 00 even
+ 11 01 even
+ -------------------------------------------------
+
+ (4) Special cases (see (4) of Section A).
+
+ */
+
diff --git a/05/musl-0.6.0/src/math/e_sqrtf.c b/05/musl-0.6.0/src/math/e_sqrtf.c
new file mode 100644
index 0000000..03a15be
--- /dev/null
+++ b/05/musl-0.6.0/src/math/e_sqrtf.c
@@ -0,0 +1,85 @@
+/* e_sqrtf.c -- float version of e_sqrt.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one = 1.0, tiny=1.0e-30;
+
+float
+sqrtf(float x)
+{
+ float z;
+ int32_t sign = (int)0x80000000;
+ int32_t ix,s,q,m,t,i;
+ uint32_t r;
+
+ GET_FLOAT_WORD(ix,x);
+
+ /* take care of Inf and NaN */
+ if((ix&0x7f800000)==0x7f800000) {
+ return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
+ sqrt(-inf)=sNaN */
+ }
+ /* take care of zero */
+ if(ix<=0) {
+ if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */
+ else if(ix<0)
+ return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
+ }
+ /* normalize x */
+ m = (ix>>23);
+ if(m==0) { /* subnormal x */
+ for(i=0;(ix&0x00800000)==0;i++) ix<<=1;
+ m -= i-1;
+ }
+ m -= 127; /* unbias exponent */
+ ix = (ix&0x007fffff)|0x00800000;
+ if(m&1) /* odd m, double x to make it even */
+ ix += ix;
+ m >>= 1; /* m = [m/2] */
+
+ /* generate sqrt(x) bit by bit */
+ ix += ix;
+ q = s = 0; /* q = sqrt(x) */
+ r = 0x01000000; /* r = moving bit from right to left */
+
+ while(r!=0) {
+ t = s+r;
+ if(t<=ix) {
+ s = t+r;
+ ix -= t;
+ q += r;
+ }
+ ix += ix;
+ r>>=1;
+ }
+
+ /* use floating add to find out rounding direction */
+ if(ix!=0) {
+ z = one-tiny; /* trigger inexact flag */
+ if (z>=one) {
+ z = one+tiny;
+ if (z>one)
+ q += 2;
+ else
+ q += (q&1);
+ }
+ }
+ ix = (q>>1)+0x3f000000;
+ ix += (m <<23);
+ SET_FLOAT_WORD(z,ix);
+ return z;
+}
diff --git a/05/musl-0.6.0/src/math/i386/e_exp.s b/05/musl-0.6.0/src/math/i386/e_exp.s
new file mode 100644
index 0000000..d6c54a3
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_exp.s
@@ -0,0 +1,36 @@
+.global expf
+expf:
+ mov 4(%esp),%eax
+ flds 4(%esp)
+ shr $23,%eax
+ inc %al
+ jz 1f
+ jmp 0f
+
+.global exp
+exp:
+ mov 8(%esp),%eax
+ fldl 4(%esp)
+ shl %eax
+ cmp $0xffe00000,%eax
+ jae 1f
+
+0: fldl2e
+ fmulp
+ fst %st(1)
+ frndint
+ fst %st(2)
+ fsubrp
+ f2xm1
+ fld1
+ faddp
+ fscale
+ fstp %st(1)
+ ret
+
+1: fsts 4(%esp)
+ cmpl $0xff800000,4(%esp)
+ jnz 1f
+ fstp %st(0)
+ fldz
+1: ret
diff --git a/05/musl-0.6.0/src/math/i386/e_expf.s b/05/musl-0.6.0/src/math/i386/e_expf.s
new file mode 100644
index 0000000..8b13789
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_expf.s
@@ -0,0 +1 @@
+
diff --git a/05/musl-0.6.0/src/math/i386/e_log.s b/05/musl-0.6.0/src/math/i386/e_log.s
new file mode 100644
index 0000000..34b8d38
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_log.s
@@ -0,0 +1,6 @@
+.global log
+log:
+ fldln2
+ fldl 4(%esp)
+ fyl2x
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/e_log10.s b/05/musl-0.6.0/src/math/i386/e_log10.s
new file mode 100644
index 0000000..7f48941
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_log10.s
@@ -0,0 +1,6 @@
+.global log10
+log10:
+ fldlg2
+ fldl 4(%esp)
+ fyl2x
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/e_log10f.s b/05/musl-0.6.0/src/math/i386/e_log10f.s
new file mode 100644
index 0000000..311486e
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_log10f.s
@@ -0,0 +1,6 @@
+.global log10f
+log10f:
+ fldlg2
+ flds 4(%esp)
+ fyl2x
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/e_logf.s b/05/musl-0.6.0/src/math/i386/e_logf.s
new file mode 100644
index 0000000..b8beec0
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_logf.s
@@ -0,0 +1,6 @@
+.global logf
+logf:
+ fldln2
+ flds 4(%esp)
+ fyl2x
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/e_remainder.s b/05/musl-0.6.0/src/math/i386/e_remainder.s
new file mode 100644
index 0000000..b7ff3ef
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_remainder.s
@@ -0,0 +1,16 @@
+.global remainderf
+remainderf:
+ flds 8(%esp)
+ flds 4(%esp)
+ jmp 1f
+
+.global remainder
+remainder:
+ fldl 12(%esp)
+ fldl 4(%esp)
+1: fprem1
+ fstsw %ax
+ sahf
+ jp 1b
+ fstp %st(1)
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/e_remainderf.s b/05/musl-0.6.0/src/math/i386/e_remainderf.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_remainderf.s
diff --git a/05/musl-0.6.0/src/math/i386/e_sqrt.s b/05/musl-0.6.0/src/math/i386/e_sqrt.s
new file mode 100644
index 0000000..11314dc
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_sqrt.s
@@ -0,0 +1,4 @@
+.global sqrt
+sqrt: fldl 4(%esp)
+ fsqrt
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/e_sqrtf.s b/05/musl-0.6.0/src/math/i386/e_sqrtf.s
new file mode 100644
index 0000000..015e24c
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/e_sqrtf.s
@@ -0,0 +1,4 @@
+.global sqrtf
+sqrtf: flds 4(%esp)
+ fsqrt
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_ceil.s b/05/musl-0.6.0/src/math/i386/s_ceil.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_ceil.s
diff --git a/05/musl-0.6.0/src/math/i386/s_ceilf.s b/05/musl-0.6.0/src/math/i386/s_ceilf.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_ceilf.s
diff --git a/05/musl-0.6.0/src/math/i386/s_fabs.s b/05/musl-0.6.0/src/math/i386/s_fabs.s
new file mode 100644
index 0000000..10c70f3
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_fabs.s
@@ -0,0 +1,5 @@
+.global fabs
+fabs:
+ fldl 4(%esp)
+ fabs
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_fabsf.s b/05/musl-0.6.0/src/math/i386/s_fabsf.s
new file mode 100644
index 0000000..4544269
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_fabsf.s
@@ -0,0 +1,5 @@
+.global fabsf
+fabsf:
+ flds 4(%esp)
+ fabs
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_floor.s b/05/musl-0.6.0/src/math/i386/s_floor.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_floor.s
diff --git a/05/musl-0.6.0/src/math/i386/s_floorf.s b/05/musl-0.6.0/src/math/i386/s_floorf.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_floorf.s
diff --git a/05/musl-0.6.0/src/math/i386/s_ldexp.s b/05/musl-0.6.0/src/math/i386/s_ldexp.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_ldexp.s
diff --git a/05/musl-0.6.0/src/math/i386/s_ldexpf.s b/05/musl-0.6.0/src/math/i386/s_ldexpf.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_ldexpf.s
diff --git a/05/musl-0.6.0/src/math/i386/s_rint.s b/05/musl-0.6.0/src/math/i386/s_rint.s
new file mode 100644
index 0000000..5ba4ab4
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_rint.s
@@ -0,0 +1,5 @@
+.global rint
+rint:
+ fldl 4(%esp)
+ frndint
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_rintf.s b/05/musl-0.6.0/src/math/i386/s_rintf.s
new file mode 100644
index 0000000..d7aacd8
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_rintf.s
@@ -0,0 +1,5 @@
+.global rintf
+rintf:
+ flds 4(%esp)
+ frndint
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_scalbln.s b/05/musl-0.6.0/src/math/i386/s_scalbln.s
new file mode 100644
index 0000000..bd022b4
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_scalbln.s
@@ -0,0 +1,11 @@
+.global ldexp
+.global scalbn
+.global scalbln
+ldexp:
+scalbn:
+scalbln:
+ fildl 12(%esp)
+ fldl 4(%esp)
+ fscale
+ fstp %st(1)
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_scalblnf.s b/05/musl-0.6.0/src/math/i386/s_scalblnf.s
new file mode 100644
index 0000000..379ec91
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_scalblnf.s
@@ -0,0 +1,11 @@
+.global ldexpf
+.global scalbnf
+.global scalblnf
+ldexpf:
+scalbnf:
+scalblnf:
+ fildl 8(%esp)
+ flds 4(%esp)
+ fscale
+ fstp %st(1)
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_trunc.s b/05/musl-0.6.0/src/math/i386/s_trunc.s
new file mode 100644
index 0000000..0773891
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_trunc.s
@@ -0,0 +1,36 @@
+.global ceilf
+ceilf: flds 4(%esp)
+ jmp 1f
+
+.global ceil
+ceil: fldl 4(%esp)
+1: mov $0x08fb,%edx
+ jmp 0f
+
+.global floorf
+floorf: flds 4(%esp)
+ jmp 1f
+
+.global floor
+floor: fldl 4(%esp)
+1: mov $0x04f7,%edx
+ jmp 0f
+
+.global truncf
+truncf: flds 4(%esp)
+ jmp 1f
+
+.global trunc
+trunc: fldl 4(%esp)
+1: mov $0x0cff,%edx
+
+0: fstcw 4(%esp)
+ mov 5(%esp),%ah
+ or %dh,%ah
+ and %dl,%ah
+ xchg %ah,5(%esp)
+ fldcw 4(%esp)
+ frndint
+ mov %ah,5(%esp)
+ fldcw 4(%esp)
+ ret
diff --git a/05/musl-0.6.0/src/math/i386/s_truncf.s b/05/musl-0.6.0/src/math/i386/s_truncf.s
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/05/musl-0.6.0/src/math/i386/s_truncf.s
diff --git a/05/musl-0.6.0/src/math/k_cos.c b/05/musl-0.6.0/src/math/k_cos.c
new file mode 100644
index 0000000..22e9841
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_cos.c
@@ -0,0 +1,85 @@
+
+/* @(#)k_cos.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * __kernel_cos( x, y )
+ * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ *
+ * Algorithm
+ * 1. Since cos(-x) = cos(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
+ * 3. cos(x) is approximated by a polynomial of degree 14 on
+ * [0,pi/4]
+ * 4 14
+ * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+ * where the remez error is
+ *
+ * | 2 4 6 8 10 12 14 | -58
+ * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
+ * | |
+ *
+ * 4 6 8 10 12 14
+ * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
+ * cos(x) = 1 - x*x/2 + r
+ * since cos(x+y) ~ cos(x) - sin(x)*y
+ * ~ cos(x) - x*y,
+ * a correction term is necessary in cos(x) and hence
+ * cos(x+y) = 1 - (x*x/2 - (r - x*y))
+ * For better accuracy when x > 0.3, let qx = |x|/4 with
+ * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+ * Then
+ * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
+ * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
+ * magnitude of the latter is at least a quarter of x*x/2,
+ * thus, reducing the rounding error in the subtraction.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
+C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
+C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
+C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
+C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+
+double
+__kernel_cos(double x, double y)
+{
+ double a,hz,z,r,qx;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff; /* ix = |x|'s high word*/
+ if(ix<0x3e400000) { /* if x < 2**27 */
+ if(((int)x)==0) return one; /* generate inexact */
+ }
+ z = x*x;
+ r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+ if(ix < 0x3FD33333) /* if |x| < 0.3 */
+ return one - (0.5*z - (z*r - x*y));
+ else {
+ if(ix > 0x3fe90000) { /* x > 0.78125 */
+ qx = 0.28125;
+ } else {
+ INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
+ }
+ hz = 0.5*z-qx;
+ a = one-qx;
+ return a - (hz - (z*r-x*y));
+ }
+}
diff --git a/05/musl-0.6.0/src/math/k_cosf.c b/05/musl-0.6.0/src/math/k_cosf.c
new file mode 100644
index 0000000..61dc374
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_cosf.c
@@ -0,0 +1,52 @@
+/* k_cosf.c -- float version of k_cos.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0000000000e+00, /* 0x3f800000 */
+C1 = 4.1666667908e-02, /* 0x3d2aaaab */
+C2 = -1.3888889225e-03, /* 0xbab60b61 */
+C3 = 2.4801587642e-05, /* 0x37d00d01 */
+C4 = -2.7557314297e-07, /* 0xb493f27c */
+C5 = 2.0875723372e-09, /* 0x310f74f6 */
+C6 = -1.1359647598e-11; /* 0xad47d74e */
+
+float
+__kernel_cosf(float x, float y)
+{
+ float a,hz,z,r,qx;
+ int32_t ix;
+ GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff; /* ix = |x|'s high word*/
+ if(ix<0x32000000) { /* if x < 2**27 */
+ if(((int)x)==0) return one; /* generate inexact */
+ }
+ z = x*x;
+ r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
+ if(ix < 0x3e99999a) /* if |x| < 0.3 */
+ return one - ((float)0.5*z - (z*r - x*y));
+ else {
+ if(ix > 0x3f480000) { /* x > 0.78125 */
+ qx = (float)0.28125;
+ } else {
+ SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */
+ }
+ hz = (float)0.5*z-qx;
+ a = one-qx;
+ return a - (hz - (z*r-x*y));
+ }
+}
diff --git a/05/musl-0.6.0/src/math/k_rem_pio2.c b/05/musl-0.6.0/src/math/k_rem_pio2.c
new file mode 100644
index 0000000..d993e4f
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_rem_pio2.c
@@ -0,0 +1,300 @@
+
+/* @(#)k_rem_pio2.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
+ * double x[],y[]; int e0,nx,prec; int ipio2[];
+ *
+ * __kernel_rem_pio2 return the last three digits of N with
+ * y = x - N*pi/2
+ * so that |y| < pi/2.
+ *
+ * The method is to compute the integer (mod 8) and fraction parts of
+ * (2/pi)*x without doing the full multiplication. In general we
+ * skip the part of the product that are known to be a huge integer (
+ * more accurately, = 0 mod 8 ). Thus the number of operations are
+ * independent of the exponent of the input.
+ *
+ * (2/pi) is represented by an array of 24-bit integers in ipio2[].
+ *
+ * Input parameters:
+ * x[] The input value (must be positive) is broken into nx
+ * pieces of 24-bit integers in double precision format.
+ * x[i] will be the i-th 24 bit of x. The scaled exponent
+ * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
+ * match x's up to 24 bits.
+ *
+ * Example of breaking a double positive z into x[0]+x[1]+x[2]:
+ * e0 = ilogb(z)-23
+ * z = scalbn(z,-e0)
+ * for i = 0,1,2
+ * x[i] = floor(z)
+ * z = (z-x[i])*2**24
+ *
+ *
+ * y[] ouput result in an array of double precision numbers.
+ * The dimension of y[] is:
+ * 24-bit precision 1
+ * 53-bit precision 2
+ * 64-bit precision 2
+ * 113-bit precision 3
+ * The actual value is the sum of them. Thus for 113-bit
+ * precison, one may have to do something like:
+ *
+ * long double t,w,r_head, r_tail;
+ * t = (long double)y[2] + (long double)y[1];
+ * w = (long double)y[0];
+ * r_head = t+w;
+ * r_tail = w - (r_head - t);
+ *
+ * e0 The exponent of x[0]
+ *
+ * nx dimension of x[]
+ *
+ * prec an integer indicating the precision:
+ * 0 24 bits (single)
+ * 1 53 bits (double)
+ * 2 64 bits (extended)
+ * 3 113 bits (quad)
+ *
+ * ipio2[]
+ * integer array, contains the (24*i)-th to (24*i+23)-th
+ * bit of 2/pi after binary point. The corresponding
+ * floating value is
+ *
+ * ipio2[i] * 2^(-24(i+1)).
+ *
+ * External function:
+ * double scalbn(), floor();
+ *
+ *
+ * Here is the description of some local variables:
+ *
+ * jk jk+1 is the initial number of terms of ipio2[] needed
+ * in the computation. The recommended value is 2,3,4,
+ * 6 for single, double, extended,and quad.
+ *
+ * jz local integer variable indicating the number of
+ * terms of ipio2[] used.
+ *
+ * jx nx - 1
+ *
+ * jv index for pointing to the suitable ipio2[] for the
+ * computation. In general, we want
+ * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
+ * is an integer. Thus
+ * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
+ * Hence jv = max(0,(e0-3)/24).
+ *
+ * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
+ *
+ * q[] double array with integral value, representing the
+ * 24-bits chunk of the product of x and 2/pi.
+ *
+ * q0 the corresponding exponent of q[0]. Note that the
+ * exponent for q[i] would be q0-24*i.
+ *
+ * PIo2[] double precision array, obtained by cutting pi/2
+ * into 24 bits chunks.
+ *
+ * f[] ipio2[] in floating point
+ *
+ * iq[] integer array by breaking up q[] in 24-bits chunk.
+ *
+ * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
+ *
+ * ih integer. If >0 it indicates q[] is >= 0.5, hence
+ * it also indicates the *sign* of the result.
+ *
+ */
+
+
+/*
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
+
+static const double PIo2[] = {
+ 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+ 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+ 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+ 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+ 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+ 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+ 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+ 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+};
+
+static const double
+zero = 0.0,
+one = 1.0,
+two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
+twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
+
+ int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
+{
+ int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+ double z,fw,f[20],fq[20],q[20];
+
+ /* initialize jk*/
+ jk = init_jk[prec];
+ jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ jx = nx-1;
+ jv = (e0-3)/24; if(jv<0) jv=0;
+ q0 = e0-24*(jv+1);
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ j = jv-jx; m = jx+jk;
+ for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
+
+ /* compute q[0],q[1],...q[jk] */
+ for (i=0;i<=jk;i++) {
+ for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+ }
+
+ jz = jk;
+recompute:
+ /* distill q[] into iq[] reversingly */
+ for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+ fw = (double)((int32_t)(twon24* z));
+ iq[i] = (int32_t)(z-two24*fw);
+ z = q[j-1]+fw;
+ }
+
+ /* compute n */
+ z = scalbn(z,q0); /* actual value of z */
+ z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
+ n = (int32_t) z;
+ z -= (double)n;
+ ih = 0;
+ if(q0>0) { /* need iq[jz-1] to determine n */
+ i = (iq[jz-1]>>(24-q0)); n += i;
+ iq[jz-1] -= i<<(24-q0);
+ ih = iq[jz-1]>>(23-q0);
+ }
+ else if(q0==0) ih = iq[jz-1]>>23;
+ else if(z>=0.5) ih=2;
+
+ if(ih>0) { /* q > 0.5 */
+ n += 1; carry = 0;
+ for(i=0;i<jz ;i++) { /* compute 1-q */
+ j = iq[i];
+ if(carry==0) {
+ if(j!=0) {
+ carry = 1; iq[i] = 0x1000000- j;
+ }
+ } else iq[i] = 0xffffff - j;
+ }
+ if(q0>0) { /* rare case: chance is 1 in 12 */
+ switch(q0) {
+ case 1:
+ iq[jz-1] &= 0x7fffff; break;
+ case 2:
+ iq[jz-1] &= 0x3fffff; break;
+ }
+ }
+ if(ih==2) {
+ z = one - z;
+ if(carry!=0) z -= scalbn(one,q0);
+ }
+ }
+
+ /* check if recomputation is needed */
+ if(z==zero) {
+ j = 0;
+ for (i=jz-1;i>=jk;i--) j |= iq[i];
+ if(j==0) { /* need recomputation */
+ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
+
+ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
+ f[jx+i] = (double) ipio2[jv+i];
+ for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+ q[i] = fw;
+ }
+ jz += k;
+ goto recompute;
+ }
+ }
+
+ /* chop off zero terms */
+ if(z==0.0) {
+ jz -= 1; q0 -= 24;
+ while(iq[jz]==0) { jz--; q0-=24;}
+ } else { /* break z into 24-bit if necessary */
+ z = scalbn(z,-q0);
+ if(z>=two24) {
+ fw = (double)((int32_t)(twon24*z));
+ iq[jz] = (int32_t)(z-two24*fw);
+ jz += 1; q0 += 24;
+ iq[jz] = (int32_t) fw;
+ } else iq[jz] = (int32_t) z ;
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = scalbn(one,q0);
+ for(i=jz;i>=0;i--) {
+ q[i] = fw*(double)iq[i]; fw*=twon24;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for(i=jz;i>=0;i--) {
+ for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+ fq[jz-i] = fw;
+ }
+
+ /* compress fq[] into y[] */
+ switch(prec) {
+ case 0:
+ fw = 0.0;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
+ break;
+ case 1:
+ case 2:
+ fw = 0.0;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
+ fw = fq[0]-fw;
+ for (i=1;i<=jz;i++) fw += fq[i];
+ y[1] = (ih==0)? fw: -fw;
+ break;
+ case 3: /* painful */
+ for (i=jz;i>0;i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (i=jz;i>1;i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
+ if(ih==0) {
+ y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
+ } else {
+ y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+ }
+ }
+ return n&7;
+}
diff --git a/05/musl-0.6.0/src/math/k_rem_pio2f.c b/05/musl-0.6.0/src/math/k_rem_pio2f.c
new file mode 100644
index 0000000..b543f08
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_rem_pio2f.c
@@ -0,0 +1,192 @@
+/* k_rem_pio2f.c -- float version of k_rem_pio2.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+/* In the float version, the input parameter x contains 8 bit
+ integers, not 24 bit integers. 113 bit precision is not supported. */
+
+static const int init_jk[] = {4,7,9}; /* initial value for jk */
+
+static const float PIo2[] = {
+ 1.5703125000e+00, /* 0x3fc90000 */
+ 4.5776367188e-04, /* 0x39f00000 */
+ 2.5987625122e-05, /* 0x37da0000 */
+ 7.5437128544e-08, /* 0x33a20000 */
+ 6.0026650317e-11, /* 0x2e840000 */
+ 7.3896444519e-13, /* 0x2b500000 */
+ 5.3845816694e-15, /* 0x27c20000 */
+ 5.6378512969e-18, /* 0x22d00000 */
+ 8.3009228831e-20, /* 0x1fc40000 */
+ 3.2756352257e-22, /* 0x1bc60000 */
+ 6.3331015649e-25, /* 0x17440000 */
+};
+
+static const float
+zero = 0.0,
+one = 1.0,
+two8 = 2.5600000000e+02, /* 0x43800000 */
+twon8 = 3.9062500000e-03; /* 0x3b800000 */
+
+ int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const int32_t *ipio2)
+{
+ int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
+ float z,fw,f[20],fq[20],q[20];
+
+ /* initialize jk*/
+ jk = init_jk[prec];
+ jp = jk;
+
+ /* determine jx,jv,q0, note that 3>q0 */
+ jx = nx-1;
+ jv = (e0-3)/8; if(jv<0) jv=0;
+ q0 = e0-8*(jv+1);
+
+ /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+ j = jv-jx; m = jx+jk;
+ for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
+
+ /* compute q[0],q[1],...q[jk] */
+ for (i=0;i<=jk;i++) {
+ for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
+ }
+
+ jz = jk;
+recompute:
+ /* distill q[] into iq[] reversingly */
+ for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
+ fw = (float)((int32_t)(twon8* z));
+ iq[i] = (int32_t)(z-two8*fw);
+ z = q[j-1]+fw;
+ }
+
+ /* compute n */
+ z = scalbnf(z,q0); /* actual value of z */
+ z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */
+ n = (int32_t) z;
+ z -= (float)n;
+ ih = 0;
+ if(q0>0) { /* need iq[jz-1] to determine n */
+ i = (iq[jz-1]>>(8-q0)); n += i;
+ iq[jz-1] -= i<<(8-q0);
+ ih = iq[jz-1]>>(7-q0);
+ }
+ else if(q0==0) ih = iq[jz-1]>>7;
+ else if(z>=(float)0.5) ih=2;
+
+ if(ih>0) { /* q > 0.5 */
+ n += 1; carry = 0;
+ for(i=0;i<jz ;i++) { /* compute 1-q */
+ j = iq[i];
+ if(carry==0) {
+ if(j!=0) {
+ carry = 1; iq[i] = 0x100- j;
+ }
+ } else iq[i] = 0xff - j;
+ }
+ if(q0>0) { /* rare case: chance is 1 in 12 */
+ switch(q0) {
+ case 1:
+ iq[jz-1] &= 0x7f; break;
+ case 2:
+ iq[jz-1] &= 0x3f; break;
+ }
+ }
+ if(ih==2) {
+ z = one - z;
+ if(carry!=0) z -= scalbnf(one,q0);
+ }
+ }
+
+ /* check if recomputation is needed */
+ if(z==zero) {
+ j = 0;
+ for (i=jz-1;i>=jk;i--) j |= iq[i];
+ if(j==0) { /* need recomputation */
+ for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
+
+ for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
+ f[jx+i] = (float) ipio2[jv+i];
+ for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
+ q[i] = fw;
+ }
+ jz += k;
+ goto recompute;
+ }
+ }
+
+ /* chop off zero terms */
+ if(z==(float)0.0) {
+ jz -= 1; q0 -= 8;
+ while(iq[jz]==0) { jz--; q0-=8;}
+ } else { /* break z into 8-bit if necessary */
+ z = scalbnf(z,-q0);
+ if(z>=two8) {
+ fw = (float)((int32_t)(twon8*z));
+ iq[jz] = (int32_t)(z-two8*fw);
+ jz += 1; q0 += 8;
+ iq[jz] = (int32_t) fw;
+ } else iq[jz] = (int32_t) z ;
+ }
+
+ /* convert integer "bit" chunk to floating-point value */
+ fw = scalbnf(one,q0);
+ for(i=jz;i>=0;i--) {
+ q[i] = fw*(float)iq[i]; fw*=twon8;
+ }
+
+ /* compute PIo2[0,...,jp]*q[jz,...,0] */
+ for(i=jz;i>=0;i--) {
+ for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
+ fq[jz-i] = fw;
+ }
+
+ /* compress fq[] into y[] */
+ switch(prec) {
+ case 0:
+ fw = 0.0;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
+ break;
+ case 1:
+ case 2:
+ fw = 0.0;
+ for (i=jz;i>=0;i--) fw += fq[i];
+ y[0] = (ih==0)? fw: -fw;
+ fw = fq[0]-fw;
+ for (i=1;i<=jz;i++) fw += fq[i];
+ y[1] = (ih==0)? fw: -fw;
+ break;
+ case 3: /* painful */
+ for (i=jz;i>0;i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (i=jz;i>1;i--) {
+ fw = fq[i-1]+fq[i];
+ fq[i] += fq[i-1]-fw;
+ fq[i-1] = fw;
+ }
+ for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
+ if(ih==0) {
+ y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
+ } else {
+ y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
+ }
+ }
+ return n&7;
+}
diff --git a/05/musl-0.6.0/src/math/k_sin.c b/05/musl-0.6.0/src/math/k_sin.c
new file mode 100644
index 0000000..9def258
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_sin.c
@@ -0,0 +1,68 @@
+
+/* @(#)k_sin.c 1.3 95/01/18 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __kernel_sin( x, y, iy)
+ * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
+ *
+ * Algorithm
+ * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
+ * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
+ * 3. sin(x) is approximated by a polynomial of degree 13 on
+ * [0,pi/4]
+ * 3 13
+ * sin(x) ~ x + S1*x + ... + S6*x
+ * where
+ *
+ * |sin(x) 2 4 6 8 10 12 | -58
+ * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
+ * | x |
+ *
+ * 4. sin(x+y) = sin(x) + sin'(x')*y
+ * ~ sin(x) + (1-x*x/2)*y
+ * For better accuracy, let
+ * 3 2 2 2 2
+ * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
+ * then 3 2
+ * sin(x) = x + (S1*x + (x *(r-y/2)+y))
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
+S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
+S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+
+double
+__kernel_sin(double x, double y, int iy)
+{
+ double z,r,v;
+ int32_t ix;
+ GET_HIGH_WORD(ix,x);
+ ix &= 0x7fffffff; /* high word of x */
+ if(ix<0x3e400000) /* |x| < 2**-27 */
+ {if((int)x==0) return x;} /* generate inexact */
+ z = x*x;
+ v = z*x;
+ r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
+ if(iy==0) return x+v*(S1+z*r);
+ else return x-((z*(half*y-v*r)-y)-v*S1);
+}
diff --git a/05/musl-0.6.0/src/math/k_sinf.c b/05/musl-0.6.0/src/math/k_sinf.c
new file mode 100644
index 0000000..617f614
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_sinf.c
@@ -0,0 +1,42 @@
+/* k_sinf.c -- float version of k_sin.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+half = 5.0000000000e-01,/* 0x3f000000 */
+S1 = -1.6666667163e-01, /* 0xbe2aaaab */
+S2 = 8.3333337680e-03, /* 0x3c088889 */
+S3 = -1.9841270114e-04, /* 0xb9500d01 */
+S4 = 2.7557314297e-06, /* 0x3638ef1b */
+S5 = -2.5050759689e-08, /* 0xb2d72f34 */
+S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */
+
+float
+__kernel_sinf(float x, float y, int iy)
+{
+ float z,r,v;
+ int32_t ix;
+ GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff; /* high word of x */
+ if(ix<0x32000000) /* |x| < 2**-27 */
+ {if((int)x==0) return x;} /* generate inexact */
+ z = x*x;
+ v = z*x;
+ r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
+ if(iy==0) return x+v*(S1+z*r);
+ else return x-((z*(half*y-v*r)-y)-v*S1);
+}
diff --git a/05/musl-0.6.0/src/math/k_tan.c b/05/musl-0.6.0/src/math/k_tan.c
new file mode 100644
index 0000000..f721ae6
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_tan.c
@@ -0,0 +1,149 @@
+/* @(#)k_tan.c 1.5 04/04/22 SMI */
+
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* __kernel_tan( x, y, k )
+ * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+ * Input x is assumed to be bounded by ~pi/4 in magnitude.
+ * Input y is the tail of x.
+ * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
+ *
+ * Algorithm
+ * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
+ * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+ * 3. tan(x) is approximated by a odd polynomial of degree 27 on
+ * [0,0.67434]
+ * 3 27
+ * tan(x) ~ x + T1*x + ... + T13*x
+ * where
+ *
+ * |tan(x) 2 4 26 | -59.2
+ * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
+ * | x |
+ *
+ * Note: tan(x+y) = tan(x) + tan'(x)*y
+ * ~ tan(x) + (1+x*x)*y
+ * Therefore, for better accuracy in computing tan(x+y), let
+ * 3 2 2 2 2
+ * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+ * then
+ * 3 2
+ * tan(x+y) = x + (T1*x + (x *(r+y)+y))
+ *
+ * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
+ * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
+ * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
+ */
+
+#include <math.h>
+#include "math_private.h"
+static const double xxx[] = {
+ 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
+ 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
+ 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
+ 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
+ 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
+ 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
+ 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
+ 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
+ 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
+ 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
+ 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
+ -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+ 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
+/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
+/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
+/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
+};
+#define one xxx[13]
+#define pio4 xxx[14]
+#define pio4lo xxx[15]
+#define T xxx
+/* INDENT ON */
+
+double
+__kernel_tan(double x, double y, int iy) {
+ double z, r, v, w, s;
+ int32_t ix, hx;
+
+ GET_HIGH_WORD(hx,x);
+ ix = hx & 0x7fffffff; /* high word of |x| */
+ if (ix < 0x3e300000) { /* x < 2**-28 */
+ if ((int) x == 0) { /* generate inexact */
+ uint32_t low;
+ GET_LOW_WORD(low,x);
+ if (((ix | low) | (iy + 1)) == 0)
+ return one / fabs(x);
+ else {
+ if (iy == 1)
+ return x;
+ else { /* compute -1 / (x+y) carefully */
+ double a, t;
+
+ z = w = x + y;
+ SET_LOW_WORD(z, 0);
+ v = y - (z - x);
+ t = a = -one / w;
+ SET_LOW_WORD(t, 0);
+ s = one + t * z;
+ return t + a * (s + t * v);
+ }
+ }
+ }
+ }
+ if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
+ if (hx < 0) {
+ x = -x;
+ y = -y;
+ }
+ z = pio4 - x;
+ w = pio4lo - y;
+ x = z + w;
+ y = 0.0;
+ }
+ z = x * x;
+ w = z * z;
+ /*
+ * Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+ r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
+ w * T[11]))));
+ v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
+ w * T[12])))));
+ s = z * x;
+ r = y + z * (s * (r + v) + y);
+ r += T[0] * s;
+ w = x + r;
+ if (ix >= 0x3FE59428) {
+ v = (double) iy;
+ return (double) (1 - ((hx >> 30) & 2)) *
+ (v - 2.0 * (x - (w * w / (w + v) - r)));
+ }
+ if (iy == 1)
+ return w;
+ else {
+ /*
+ * if allow error up to 2 ulp, simply return
+ * -1.0 / (x+r) here
+ */
+ /* compute -1.0 / (x+r) accurately */
+ double a, t;
+ z = w;
+ SET_LOW_WORD(z,0);
+ v = r - (z - x); /* z+v = r+x */
+ t = a = -1.0 / w; /* a = -1.0/w */
+ SET_LOW_WORD(t,0);
+ s = 1.0 + t * z;
+ return t + a * (s + t * v);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/k_tanf.c b/05/musl-0.6.0/src/math/k_tanf.c
new file mode 100644
index 0000000..99ede58
--- /dev/null
+++ b/05/musl-0.6.0/src/math/k_tanf.c
@@ -0,0 +1,105 @@
+/* k_tanf.c -- float version of k_tan.c
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+static const float
+one = 1.0000000000e+00, /* 0x3f800000 */
+pio4 = 7.8539812565e-01, /* 0x3f490fda */
+pio4lo= 3.7748947079e-08, /* 0x33222168 */
+T[] = {
+ 3.3333334327e-01, /* 0x3eaaaaab */
+ 1.3333334029e-01, /* 0x3e088889 */
+ 5.3968254477e-02, /* 0x3d5d0dd1 */
+ 2.1869488060e-02, /* 0x3cb327a4 */
+ 8.8632395491e-03, /* 0x3c11371f */
+ 3.5920790397e-03, /* 0x3b6b6916 */
+ 1.4562094584e-03, /* 0x3abede48 */
+ 5.8804126456e-04, /* 0x3a1a26c8 */
+ 2.4646313977e-04, /* 0x398137b9 */
+ 7.8179444245e-05, /* 0x38a3f445 */
+ 7.1407252108e-05, /* 0x3895c07a */
+ -1.8558637748e-05, /* 0xb79bae5f */
+ 2.5907305826e-05, /* 0x37d95384 */
+};
+
+float
+__kernel_tanf(float x, float y, int iy)
+{
+ float z,r,v,w,s;
+ int32_t ix,hx;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff; /* high word of |x| */
+ if(ix<0x31800000) { /* x < 2**-28 */
+ if ((int) x == 0) { /* generate inexact */
+ if ((ix | (iy + 1)) == 0)
+ return one / fabsf(x);
+ else {
+ if (iy == 1)
+ return x;
+ else { /* compute -1 / (x+y) carefully */
+ double a, t;
+
+ z = w = x + y;
+ GET_FLOAT_WORD(ix, z);
+ SET_FLOAT_WORD(z, ix & 0xfffff000);
+ v = y - (z - x);
+ t = a = -one / w;
+ GET_FLOAT_WORD(ix, t);
+ SET_FLOAT_WORD(t, ix & 0xfffff000);
+ s = one + t * z;
+ return t + a * (s + t * v);
+ }
+ }
+ }
+ }
+ if(ix>=0x3f2ca140) { /* |x|>=0.6744 */
+ if(hx<0) {x = -x; y = -y;}
+ z = pio4-x;
+ w = pio4lo-y;
+ x = z+w; y = 0.0;
+ }
+ z = x*x;
+ w = z*z;
+ /* Break x^5*(T[1]+x^2*T[2]+...) into
+ * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+ * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+ */
+ r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
+ v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
+ s = z*x;
+ r = y + z*(s*(r+v)+y);
+ r += T[0]*s;
+ w = x+r;
+ if(ix>=0x3f2ca140) {
+ v = (float)iy;
+ return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r)));
+ }
+ if(iy==1) return w;
+ else { /* if allow error up to 2 ulp,
+ simply return -1.0/(x+r) here */
+ /* compute -1.0/(x+r) accurately */
+ float a,t;
+ int32_t i;
+ z = w;
+ GET_FLOAT_WORD(i,z);
+ SET_FLOAT_WORD(z,i&0xfffff000);
+ v = r-(z - x); /* z+v = r+x */
+ t = a = -(float)1.0/w; /* a = -1.0/w */
+ GET_FLOAT_WORD(i,t);
+ SET_FLOAT_WORD(t,i&0xfffff000);
+ s = (float)1.0+t*z;
+ return t+a*(s+t*v);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/math_private.h b/05/musl-0.6.0/src/math/math_private.h
new file mode 100644
index 0000000..28a6a19
--- /dev/null
+++ b/05/musl-0.6.0/src/math/math_private.h
@@ -0,0 +1,143 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#ifndef _MATH_PRIVATE_H_
+#define _MATH_PRIVATE_H_
+
+#include <inttypes.h>
+
+/*
+ * The original fdlibm code used statements like:
+ * n0 = ((*(int*)&one)>>29)^1; * index of high word *
+ * ix0 = *(n0+(int*)&x); * high word of x *
+ * ix1 = *((1-n0)+(int*)&x); * low word of x *
+ * to dig two 32 bit words out of the 64 bit IEEE floating point
+ * value. That is non-ANSI, and, moreover, the gcc instruction
+ * scheduler gets it wrong. We instead use the following macros.
+ * Unlike the original code, we determine the endianness at compile
+ * time, not at run time; I don't see much benefit to selecting
+ * endianness at run time.
+ */
+
+/*
+ * A union which permits us to convert between a double and two 32 bit
+ * ints.
+ */
+
+typedef union
+{
+ double value;
+ uint64_t words;
+} ieee_double_shape_type;
+
+/* Get two 32 bit ints from a double. */
+
+#define EXTRACT_WORDS(ix0,ix1,d) \
+do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix0) = ew_u.words >> 32; \
+ (ix1) = (uint32_t)ew_u.words; \
+} while (0)
+
+/* Get the more significant 32 bit int from a double. */
+
+#define GET_HIGH_WORD(i,d) \
+do { \
+ ieee_double_shape_type gh_u; \
+ gh_u.value = (d); \
+ (i) = gh_u.words >> 32; \
+} while (0)
+
+/* Get the less significant 32 bit int from a double. */
+
+#define GET_LOW_WORD(i,d) \
+do { \
+ ieee_double_shape_type gl_u; \
+ gl_u.value = (d); \
+ (i) = (uint32_t)gl_u.words; \
+} while (0)
+
+/* Set a double from two 32 bit ints. */
+
+#define INSERT_WORDS(d,ix0,ix1) \
+do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.words = ((uint64_t)(ix0) << 32) | (ix1); \
+ (d) = iw_u.value; \
+} while (0)
+
+/* Set the more significant 32 bits of a double from an int. */
+
+#define SET_HIGH_WORD(d,v) \
+do { \
+ ieee_double_shape_type sh_u; \
+ sh_u.value = (d); \
+ sh_u.words &= 0xffffffff; \
+ sh_u.words |= ((uint64_t)(v) << 32); \
+ (d) = sh_u.value; \
+} while (0)
+
+/* Set the less significant 32 bits of a double from an int. */
+
+#define SET_LOW_WORD(d,v) \
+do { \
+ ieee_double_shape_type sl_u; \
+ sl_u.value = (d); \
+ sl_u.words &= 0xffffffff00000000ull; \
+ sl_u.words |= (uint32_t)(v); \
+ (d) = sl_u.value; \
+} while (0)
+
+/*
+ * A union which permits us to convert between a float and a 32 bit
+ * int.
+ */
+
+typedef union
+{
+ float value;
+ uint32_t word;
+} ieee_float_shape_type;
+
+/* Get a 32 bit int from a float. */
+
+#define GET_FLOAT_WORD(i,d) \
+do { \
+ ieee_float_shape_type gf_u; \
+ gf_u.value = (d); \
+ (i) = gf_u.word; \
+} while (0)
+
+/* Set a float from a 32 bit int. */
+
+#define SET_FLOAT_WORD(d,i) \
+do { \
+ ieee_float_shape_type sf_u; \
+ sf_u.word = (i); \
+ (d) = sf_u.value; \
+} while (0)
+
+/* fdlibm kernel function */
+int __ieee754_rem_pio2(double,double*);
+double __kernel_sin(double,double,int);
+double __kernel_cos(double,double);
+double __kernel_tan(double,double,int);
+int __kernel_rem_pio2(double*,double*,int,int,int,const int*);
+
+/* float versions of fdlibm kernel functions */
+int __ieee754_rem_pio2f(float,float*);
+float __kernel_sinf(float,float,int);
+float __kernel_cosf(float,float);
+float __kernel_tanf(float,float,int);
+int __kernel_rem_pio2f(float*,float*,int,int,int,const int*);
+
+#endif /* !_MATH_PRIVATE_H_ */
diff --git a/05/musl-0.6.0/src/math/s_asinh.c b/05/musl-0.6.0/src/math/s_asinh.c
new file mode 100644
index 0000000..2601609
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_asinh.c
@@ -0,0 +1,53 @@
+/* @(#)s_asinh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* asinh(x)
+ * Method :
+ * Based on
+ * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+ * we have
+ * asinh(x) := x if 1+x*x=1,
+ * := sign(x)*(log(x)+ln2)) for large |x|, else
+ * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
+ * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
+huge= 1.00000000000000000000e+300;
+
+double
+asinh(double x)
+{
+ double t,w;
+ int32_t hx,ix;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
+ if(ix< 0x3e300000) { /* |x|<2**-28 */
+ if(huge+x>one) return x; /* return x inexact except 0 */
+ }
+ if(ix>0x41b00000) { /* |x| > 2**28 */
+ w = log(fabs(x))+ln2;
+ } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
+ t = fabs(x);
+ w = log(2.0*t+one/(sqrt(x*x+one)+t));
+ } else { /* 2.0 > |x| > 2**-28 */
+ t = x*x;
+ w =log1p(fabs(x)+t/(one+sqrt(one+t)));
+ }
+ if(hx>0) return w; else return -w;
+}
diff --git a/05/musl-0.6.0/src/math/s_asinhf.c b/05/musl-0.6.0/src/math/s_asinhf.c
new file mode 100644
index 0000000..04f8d07
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_asinhf.c
@@ -0,0 +1,45 @@
+/* s_asinhf.c -- float version of s_asinh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0000000000e+00, /* 0x3F800000 */
+ln2 = 6.9314718246e-01, /* 0x3f317218 */
+huge= 1.0000000000e+30;
+
+float
+asinhf(float x)
+{
+ float t,w;
+ int32_t hx,ix;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7f800000) return x+x; /* x is inf or NaN */
+ if(ix< 0x31800000) { /* |x|<2**-28 */
+ if(huge+x>one) return x; /* return x inexact except 0 */
+ }
+ if(ix>0x4d800000) { /* |x| > 2**28 */
+ w = logf(fabsf(x))+ln2;
+ } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
+ t = fabsf(x);
+ w = logf((float)2.0*t+one/(sqrtf(x*x+one)+t));
+ } else { /* 2.0 > |x| > 2**-28 */
+ t = x*x;
+ w =log1pf(fabsf(x)+t/(one+sqrtf(one+t)));
+ }
+ if(hx>0) return w; else return -w;
+}
diff --git a/05/musl-0.6.0/src/math/s_atan.c b/05/musl-0.6.0/src/math/s_atan.c
new file mode 100644
index 0000000..1faac02
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_atan.c
@@ -0,0 +1,115 @@
+/* @(#)s_atan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* atan(x)
+ * Method
+ * 1. Reduce x to positive by atan(x) = -atan(-x).
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ * is further reduced to one of the following intervals and the
+ * arctangent of t is evaluated by the corresponding formula:
+ *
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double atanhi[] = {
+ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+};
+
+static const double atanlo[] = {
+ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+};
+
+static const double aT[] = {
+ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
+};
+
+ static const double
+one = 1.0,
+huge = 1.0e300;
+
+double
+atan(double x)
+{
+ double w,s1,s2,z;
+ int32_t ix,hx,id;
+
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x44100000) { /* if |x| >= 2^66 */
+ uint32_t low;
+ GET_LOW_WORD(low,x);
+ if(ix>0x7ff00000||
+ (ix==0x7ff00000&&(low!=0)))
+ return x+x; /* NaN */
+ if(hx>0) return atanhi[3]+atanlo[3];
+ else return -atanhi[3]-atanlo[3];
+ } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
+ if (ix < 0x3e200000) { /* |x| < 2^-29 */
+ if(huge+x>one) return x; /* raise inexact */
+ }
+ id = -1;
+ } else {
+ x = fabs(x);
+ if (ix < 0x3ff30000) { /* |x| < 1.1875 */
+ if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
+ id = 0; x = (2.0*x-one)/(2.0+x);
+ } else { /* 11/16<=|x|< 19/16 */
+ id = 1; x = (x-one)/(x+one);
+ }
+ } else {
+ if (ix < 0x40038000) { /* |x| < 2.4375 */
+ id = 2; x = (x-1.5)/(one+1.5*x);
+ } else { /* 2.4375 <= |x| < 2^66 */
+ id = 3; x = -1.0/x;
+ }
+ }}
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
+ s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
+ if (id<0) return x - x*(s1+s2);
+ else {
+ z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+ return (hx<0)? -z:z;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_atanf.c b/05/musl-0.6.0/src/math/s_atanf.c
new file mode 100644
index 0000000..03067e1
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_atanf.c
@@ -0,0 +1,95 @@
+/* s_atanf.c -- float version of s_atan.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float atanhi[] = {
+ 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+ 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+ 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+ 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+};
+
+static const float atanlo[] = {
+ 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+ 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+ 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+ 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+};
+
+static const float aT[] = {
+ 3.3333334327e-01, /* 0x3eaaaaaa */
+ -2.0000000298e-01, /* 0xbe4ccccd */
+ 1.4285714924e-01, /* 0x3e124925 */
+ -1.1111110449e-01, /* 0xbde38e38 */
+ 9.0908870101e-02, /* 0x3dba2e6e */
+ -7.6918758452e-02, /* 0xbd9d8795 */
+ 6.6610731184e-02, /* 0x3d886b35 */
+ -5.8335702866e-02, /* 0xbd6ef16b */
+ 4.9768779427e-02, /* 0x3d4bda59 */
+ -3.6531571299e-02, /* 0xbd15a221 */
+ 1.6285819933e-02, /* 0x3c8569d7 */
+};
+
+ static const float
+one = 1.0,
+huge = 1.0e30;
+
+float
+atanf(float x)
+{
+ float w,s1,s2,z;
+ int32_t ix,hx,id;
+
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x50800000) { /* if |x| >= 2^34 */
+ if(ix>0x7f800000)
+ return x+x; /* NaN */
+ if(hx>0) return atanhi[3]+atanlo[3];
+ else return -atanhi[3]-atanlo[3];
+ } if (ix < 0x3ee00000) { /* |x| < 0.4375 */
+ if (ix < 0x31000000) { /* |x| < 2^-29 */
+ if(huge+x>one) return x; /* raise inexact */
+ }
+ id = -1;
+ } else {
+ x = fabsf(x);
+ if (ix < 0x3f980000) { /* |x| < 1.1875 */
+ if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */
+ id = 0; x = ((float)2.0*x-one)/((float)2.0+x);
+ } else { /* 11/16<=|x|< 19/16 */
+ id = 1; x = (x-one)/(x+one);
+ }
+ } else {
+ if (ix < 0x401c0000) { /* |x| < 2.4375 */
+ id = 2; x = (x-(float)1.5)/(one+(float)1.5*x);
+ } else { /* 2.4375 <= |x| < 2^66 */
+ id = 3; x = -(float)1.0/x;
+ }
+ }}
+ /* end of argument reduction */
+ z = x*x;
+ w = z*z;
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
+ s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
+ if (id<0) return x - x*(s1+s2);
+ else {
+ z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
+ return (hx<0)? -z:z;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_cbrt.c b/05/musl-0.6.0/src/math/s_cbrt.c
new file mode 100644
index 0000000..8adcb19
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_cbrt.c
@@ -0,0 +1,77 @@
+/* @(#)s_cbrt.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+/* cbrt(x)
+ * Return cube root of x
+ */
+static const uint32_t
+ B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */
+ B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
+
+static const double
+C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */
+D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */
+E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */
+F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */
+G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */
+
+double
+cbrt(double x)
+{
+ int32_t hx;
+ double r,s,t=0.0,w;
+ uint32_t sign;
+ uint32_t high,low;
+
+ GET_HIGH_WORD(hx,x);
+ sign=hx&0x80000000; /* sign= sign(x) */
+ hx ^=sign;
+ if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
+ GET_LOW_WORD(low,x);
+ if((hx|low)==0)
+ return(x); /* cbrt(0) is itself */
+
+ SET_HIGH_WORD(x,hx); /* x <- |x| */
+ /* rough cbrt to 5 bits */
+ if(hx<0x00100000) /* subnormal number */
+ {SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
+ t*=x; GET_HIGH_WORD(high,t); SET_HIGH_WORD(t,high/3+B2);
+ }
+ else
+ SET_HIGH_WORD(t,hx/3+B1);
+
+
+ /* new cbrt to 23 bits, may be implemented in single precision */
+ r=t*t/x;
+ s=C+r*t;
+ t*=G+F/(s+E+D/s);
+
+ /* chopped to 20 bits and make it larger than cbrt(x) */
+ GET_HIGH_WORD(high,t);
+ INSERT_WORDS(t,high+0x00000001,0);
+
+
+ /* one step newton iteration to 53 bits with error less than 0.667 ulps */
+ s=t*t; /* t*t is exact */
+ r=x/s;
+ w=t+t;
+ r=(r-t)/(w+r); /* r-s is exact */
+ t=t+t*r;
+
+ /* retore the sign bit */
+ GET_HIGH_WORD(high,t);
+ SET_HIGH_WORD(t,high|sign);
+ return(t);
+}
diff --git a/05/musl-0.6.0/src/math/s_cbrtf.c b/05/musl-0.6.0/src/math/s_cbrtf.c
new file mode 100644
index 0000000..e7b46de
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_cbrtf.c
@@ -0,0 +1,67 @@
+/* s_cbrtf.c -- float version of s_cbrt.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+/* cbrtf(x)
+ * Return cube root of x
+ */
+static const unsigned
+ B1 = 709958130, /* B1 = (84+2/3-0.03306235651)*2**23 */
+ B2 = 642849266; /* B2 = (76+2/3-0.03306235651)*2**23 */
+
+static const float
+C = 5.4285717010e-01, /* 19/35 = 0x3f0af8b0 */
+D = -7.0530611277e-01, /* -864/1225 = 0xbf348ef1 */
+E = 1.4142856598e+00, /* 99/70 = 0x3fb50750 */
+F = 1.6071428061e+00, /* 45/28 = 0x3fcdb6db */
+G = 3.5714286566e-01; /* 5/14 = 0x3eb6db6e */
+
+float
+cbrtf(float x)
+{
+ float r,s,t;
+ int32_t hx;
+ uint32_t sign;
+ uint32_t high;
+
+ GET_FLOAT_WORD(hx,x);
+ sign=hx&0x80000000; /* sign= sign(x) */
+ hx ^=sign;
+ if(hx>=0x7f800000) return(x+x); /* cbrt(NaN,INF) is itself */
+ if(hx==0)
+ return(x); /* cbrt(0) is itself */
+
+ SET_FLOAT_WORD(x,hx); /* x <- |x| */
+ /* rough cbrt to 5 bits */
+ if(hx<0x00800000) /* subnormal number */
+ {SET_FLOAT_WORD(t,0x4b800000); /* set t= 2**24 */
+ t*=x; GET_FLOAT_WORD(high,t); SET_FLOAT_WORD(t,high/3+B2);
+ }
+ else
+ SET_FLOAT_WORD(t,hx/3+B1);
+
+
+ /* new cbrt to 23 bits */
+ r=t*t/x;
+ s=C+r*t;
+ t*=G+F/(s+E+D/s);
+
+ /* retore the sign bit */
+ GET_FLOAT_WORD(high,t);
+ SET_FLOAT_WORD(t,high|sign);
+ return(t);
+}
diff --git a/05/musl-0.6.0/src/math/s_ceil.c b/05/musl-0.6.0/src/math/s_ceil.c
new file mode 100644
index 0000000..1670cad
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_ceil.c
@@ -0,0 +1,68 @@
+/* @(#)s_ceil.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * ceil(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to ceil(x).
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double huge = 1.0e300;
+
+double
+ceil(double x)
+{
+ int32_t i0,i1,j0;
+ uint32_t i,j;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+ if(i0<0) {i0=0x80000000;i1=0;}
+ else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
+ }
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0>0) i0 += (0x00100000)>>j0;
+ i0 &= (~i); i1=0;
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0>0) {
+ if(j0==20) i0+=1;
+ else {
+ j = i1 + (1<<(52-j0));
+ if(j<i1) i0+=1; /* got a carry */
+ i1 = j;
+ }
+ }
+ i1 &= (~i);
+ }
+ }
+ INSERT_WORDS(x,i0,i1);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_ceilf.c b/05/musl-0.6.0/src/math/s_ceilf.c
new file mode 100644
index 0000000..3615041
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_ceilf.c
@@ -0,0 +1,49 @@
+/* s_ceilf.c -- float version of s_ceil.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float huge = 1.0e30;
+
+float
+ceilf(float x)
+{
+ int32_t i0,j0;
+ uint32_t i;
+
+ GET_FLOAT_WORD(i0,x);
+ j0 = ((i0>>23)&0xff)-0x7f;
+ if(j0<23) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
+ if(i0<0) {i0=0x80000000;}
+ else if(i0!=0) { i0=0x3f800000;}
+ }
+ } else {
+ i = (0x007fffff)>>j0;
+ if((i0&i)==0) return x; /* x is integral */
+ if(huge+x>(float)0.0) { /* raise inexact flag */
+ if(i0>0) i0 += (0x00800000)>>j0;
+ i0 &= (~i);
+ }
+ }
+ } else {
+ if(j0==0x80) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ }
+ SET_FLOAT_WORD(x,i0);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_copysign.c b/05/musl-0.6.0/src/math/s_copysign.c
new file mode 100644
index 0000000..59d3877
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_copysign.c
@@ -0,0 +1,30 @@
+/* @(#)s_copysign.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * copysign(double x, double y)
+ * copysign(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+copysign(double x, double y)
+{
+ uint32_t hx,hy;
+ GET_HIGH_WORD(hx,x);
+ GET_HIGH_WORD(hy,y);
+ SET_HIGH_WORD(x,(hx&0x7fffffff)|(hy&0x80000000));
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_copysignf.c b/05/musl-0.6.0/src/math/s_copysignf.c
new file mode 100644
index 0000000..d650e8e
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_copysignf.c
@@ -0,0 +1,33 @@
+/* s_copysignf.c -- float version of s_copysign.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * copysignf(float x, float y)
+ * copysignf(x,y) returns a value with the magnitude of x and
+ * with the sign bit of y.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+copysignf(float x, float y)
+{
+ uint32_t ix,iy;
+ GET_FLOAT_WORD(ix,x);
+ GET_FLOAT_WORD(iy,y);
+ SET_FLOAT_WORD(x,(ix&0x7fffffff)|(iy&0x80000000));
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_cos.c b/05/musl-0.6.0/src/math/s_cos.c
new file mode 100644
index 0000000..1893ab1
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_cos.c
@@ -0,0 +1,74 @@
+/* @(#)s_cos.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* cos(x)
+ * Return cosine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cosine function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+cos(double x)
+{
+ double y[2],z=0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
+
+ /* cos(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ switch(n&3) {
+ case 0: return __kernel_cos(y[0],y[1]);
+ case 1: return -__kernel_sin(y[0],y[1],1);
+ case 2: return -__kernel_cos(y[0],y[1]);
+ default:
+ return __kernel_sin(y[0],y[1],1);
+ }
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_cosf.c b/05/musl-0.6.0/src/math/s_cosf.c
new file mode 100644
index 0000000..14b8e98
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_cosf.c
@@ -0,0 +1,47 @@
+/* s_cosf.c -- float version of s_cos.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one=1.0;
+
+float
+cosf(float x)
+{
+ float y[2],z=0.0;
+ int32_t n,ix;
+
+ GET_FLOAT_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3f490fd8) return __kernel_cosf(x,z);
+
+ /* cos(Inf or NaN) is NaN */
+ else if (ix>=0x7f800000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2f(x,y);
+ switch(n&3) {
+ case 0: return __kernel_cosf(y[0],y[1]);
+ case 1: return -__kernel_sinf(y[0],y[1],1);
+ case 2: return -__kernel_cosf(y[0],y[1]);
+ default:
+ return __kernel_sinf(y[0],y[1],1);
+ }
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_erf.c b/05/musl-0.6.0/src/math/s_erf.c
new file mode 100644
index 0000000..e321fee
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_erf.c
@@ -0,0 +1,298 @@
+/* @(#)s_erf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* double erf(double x)
+ * double erfc(double x)
+ * x
+ * 2 |\
+ * erf(x) = --------- | exp(-t*t)dt
+ * sqrt(pi) \|
+ * 0
+ *
+ * erfc(x) = 1-erf(x)
+ * Note that
+ * erf(-x) = -erf(x)
+ * erfc(-x) = 2 - erfc(x)
+ *
+ * Method:
+ * 1. For |x| in [0, 0.84375]
+ * erf(x) = x + x*R(x^2)
+ * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
+ * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
+ * where R = P/Q where P is an odd poly of degree 8 and
+ * Q is an odd poly of degree 10.
+ * -57.90
+ * | R - (erf(x)-x)/x | <= 2
+ *
+ *
+ * Remark. The formula is derived by noting
+ * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
+ * and that
+ * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
+ * is close to one. The interval is chosen because the fix
+ * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
+ * near 0.6174), and by some experiment, 0.84375 is chosen to
+ * guarantee the error is less than one ulp for erf.
+ *
+ * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
+ * c = 0.84506291151 rounded to single (24 bits)
+ * erf(x) = sign(x) * (c + P1(s)/Q1(s))
+ * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
+ * 1+(c+P1(s)/Q1(s)) if x < 0
+ * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
+ * Remark: here we use the taylor series expansion at x=1.
+ * erf(1+s) = erf(1) + s*Poly(s)
+ * = 0.845.. + P1(s)/Q1(s)
+ * That is, we use rational approximation to approximate
+ * erf(1+s) - (c = (single)0.84506291151)
+ * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
+ * where
+ * P1(s) = degree 6 poly in s
+ * Q1(s) = degree 6 poly in s
+ *
+ * 3. For x in [1.25,1/0.35(~2.857143)],
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
+ * erf(x) = 1 - erfc(x)
+ * where
+ * R1(z) = degree 7 poly in z, (z=1/x^2)
+ * S1(z) = degree 8 poly in z
+ *
+ * 4. For x in [1/0.35,28]
+ * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
+ * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
+ * = 2.0 - tiny (if x <= -6)
+ * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
+ * erf(x) = sign(x)*(1.0 - tiny)
+ * where
+ * R2(z) = degree 6 poly in z, (z=1/x^2)
+ * S2(z) = degree 7 poly in z
+ *
+ * Note1:
+ * To compute exp(-x*x-0.5625+R/S), let s be a single
+ * precision number and s := x; then
+ * -x*x = -s*s + (s-x)*(s+x)
+ * exp(-x*x-0.5626+R/S) =
+ * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
+ * Note2:
+ * Here 4 and 5 make use of the asymptotic series
+ * exp(-x*x)
+ * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
+ * x*sqrt(pi)
+ * We use rational approximation to approximate
+ * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
+ * Here is the error bound for R1/S1 and R2/S2
+ * |R1/S1 - f(x)| < 2**(-62.57)
+ * |R2/S2 - f(x)| < 2**(-61.52)
+ *
+ * 5. For inf > x >= 28
+ * erf(x) = sign(x) *(1 - tiny) (raise inexact)
+ * erfc(x) = tiny*tiny (raise underflow) if x > 0
+ * = 2 - tiny if x<0
+ *
+ * 7. Special case:
+ * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
+ * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
+ * erfc/erf(NaN) is NaN
+ */
+
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+tiny = 1e-300,
+half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
+one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
+two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
+ /* c = (float)0.84506291151 */
+erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
+efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
+pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
+pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
+pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
+pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
+pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
+qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
+qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
+qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
+qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
+qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
+pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
+pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
+pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
+pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
+pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
+pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
+qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
+qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
+qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
+qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
+qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
+qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
+ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
+ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
+ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
+ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
+ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
+ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
+ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
+sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
+sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
+sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
+sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
+sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
+sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
+sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
+sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
+rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
+rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
+rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
+rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
+rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
+rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
+sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
+sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
+sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
+sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
+sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
+sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
+sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+
+double
+erf(double x)
+{
+ int32_t hx,ix,i;
+ double R,S,P,Q,s,y,z,r;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) { /* erf(nan)=nan */
+ i = ((uint32_t)hx>>31)<<1;
+ return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
+ }
+
+ if(ix < 0x3feb0000) { /* |x|<0.84375 */
+ if(ix < 0x3e300000) { /* |x|<2**-28 */
+ if (ix < 0x00800000)
+ return 0.125*(8.0*x+efx8*x); /*avoid underflow */
+ return x + efx*x;
+ }
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ return x + x*y;
+ }
+ if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
+ s = fabs(x)-one;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+ }
+ if (ix >= 0x40180000) { /* inf>|x|>=6 */
+ if(hx>=0) return one-tiny; else return tiny-one;
+ }
+ x = fabs(x);
+ s = one/(x*x);
+ if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
+ R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+ } else { /* |x| >= 1/0.35 */
+ R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+ }
+ z = x;
+ SET_LOW_WORD(z,0);
+ r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S);
+ if(hx>=0) return one-r/x; else return r/x-one;
+}
+
+double
+erfc(double x)
+{
+ int32_t hx,ix;
+ double R,S,P,Q,s,y,z,r;
+ GET_HIGH_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7ff00000) { /* erfc(nan)=nan */
+ /* erfc(+-inf)=0,2 */
+ return (double)(((uint32_t)hx>>31)<<1)+one/x;
+ }
+
+ if(ix < 0x3feb0000) { /* |x|<0.84375 */
+ if(ix < 0x3c700000) /* |x|<2**-56 */
+ return one-x;
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ if(hx < 0x3fd00000) { /* x<1/4 */
+ return one-(x+x*y);
+ } else {
+ r = x*y;
+ r += (x-half);
+ return half - r ;
+ }
+ }
+ if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
+ s = fabs(x)-one;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ if(hx>=0) {
+ z = one-erx; return z - P/Q;
+ } else {
+ z = erx+P/Q; return one+z;
+ }
+ }
+ if (ix < 0x403c0000) { /* |x|<28 */
+ x = fabs(x);
+ s = one/(x*x);
+ if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
+ R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+ } else { /* |x| >= 1/.35 ~ 2.857143 */
+ if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
+ R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+ }
+ z = x;
+ SET_LOW_WORD(z,0);
+ r = exp(-z*z-0.5625)*
+ exp((z-x)*(z+x)+R/S);
+ if(hx>0) return r/x; else return two-r/x;
+ } else {
+ if(hx>0) return tiny*tiny; else return two-tiny;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_erff.c b/05/musl-0.6.0/src/math/s_erff.c
new file mode 100644
index 0000000..28e2f7b
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_erff.c
@@ -0,0 +1,207 @@
+/* s_erff.c -- float version of s_erf.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+tiny = 1e-30,
+half= 5.0000000000e-01, /* 0x3F000000 */
+one = 1.0000000000e+00, /* 0x3F800000 */
+two = 2.0000000000e+00, /* 0x40000000 */
+ /* c = (subfloat)0.84506291151 */
+erx = 8.4506291151e-01, /* 0x3f58560b */
+/*
+ * Coefficients for approximation to erf on [0,0.84375]
+ */
+efx = 1.2837916613e-01, /* 0x3e0375d4 */
+efx8= 1.0270333290e+00, /* 0x3f8375d4 */
+pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
+pp1 = -3.2504209876e-01, /* 0xbea66beb */
+pp2 = -2.8481749818e-02, /* 0xbce9528f */
+pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
+pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
+qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
+qq2 = 6.5022252500e-02, /* 0x3d852a63 */
+qq3 = 5.0813062117e-03, /* 0x3ba68116 */
+qq4 = 1.3249473704e-04, /* 0x390aee49 */
+qq5 = -3.9602282413e-06, /* 0xb684e21a */
+/*
+ * Coefficients for approximation to erf in [0.84375,1.25]
+ */
+pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
+pa1 = 4.1485610604e-01, /* 0x3ed46805 */
+pa2 = -3.7220788002e-01, /* 0xbebe9208 */
+pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
+pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
+pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
+pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
+qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
+qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
+qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
+qa4 = 1.2617121637e-01, /* 0x3e013307 */
+qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
+qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
+/*
+ * Coefficients for approximation to erfc in [1.25,1/0.35]
+ */
+ra0 = -9.8649440333e-03, /* 0xbc21a093 */
+ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
+ra2 = -1.0558626175e+01, /* 0xc128f022 */
+ra3 = -6.2375331879e+01, /* 0xc2798057 */
+ra4 = -1.6239666748e+02, /* 0xc322658c */
+ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
+ra6 = -8.1287437439e+01, /* 0xc2a2932b */
+ra7 = -9.8143291473e+00, /* 0xc11d077e */
+sa1 = 1.9651271820e+01, /* 0x419d35ce */
+sa2 = 1.3765776062e+02, /* 0x4309a863 */
+sa3 = 4.3456588745e+02, /* 0x43d9486f */
+sa4 = 6.4538726807e+02, /* 0x442158c9 */
+sa5 = 4.2900814819e+02, /* 0x43d6810b */
+sa6 = 1.0863500214e+02, /* 0x42d9451f */
+sa7 = 6.5702495575e+00, /* 0x40d23f7c */
+sa8 = -6.0424413532e-02, /* 0xbd777f97 */
+/*
+ * Coefficients for approximation to erfc in [1/.35,28]
+ */
+rb0 = -9.8649431020e-03, /* 0xbc21a092 */
+rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
+rb2 = -1.7757955551e+01, /* 0xc18e104b */
+rb3 = -1.6063638306e+02, /* 0xc320a2ea */
+rb4 = -6.3756646729e+02, /* 0xc41f6441 */
+rb5 = -1.0250950928e+03, /* 0xc480230b */
+rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
+sb1 = 3.0338060379e+01, /* 0x41f2b459 */
+sb2 = 3.2579251099e+02, /* 0x43a2e571 */
+sb3 = 1.5367296143e+03, /* 0x44c01759 */
+sb4 = 3.1998581543e+03, /* 0x4547fdbb */
+sb5 = 2.5530502930e+03, /* 0x451f90ce */
+sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
+sb7 = -2.2440952301e+01; /* 0xc1b38712 */
+
+float
+erff(float x)
+{
+ int32_t hx,ix,i;
+ float R,S,P,Q,s,y,z,r;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7f800000) { /* erf(nan)=nan */
+ i = ((uint32_t)hx>>31)<<1;
+ return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
+ }
+
+ if(ix < 0x3f580000) { /* |x|<0.84375 */
+ if(ix < 0x31800000) { /* |x|<2**-28 */
+ if (ix < 0x04000000)
+ /*avoid underflow */
+ return (float)0.125*((float)8.0*x+efx8*x);
+ return x + efx*x;
+ }
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ return x + x*y;
+ }
+ if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
+ s = fabsf(x)-one;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ if(hx>=0) return erx + P/Q; else return -erx - P/Q;
+ }
+ if (ix >= 0x40c00000) { /* inf>|x|>=6 */
+ if(hx>=0) return one-tiny; else return tiny-one;
+ }
+ x = fabsf(x);
+ s = one/(x*x);
+ if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
+ R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+ } else { /* |x| >= 1/0.35 */
+ R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+ }
+ GET_FLOAT_WORD(ix,x);
+ SET_FLOAT_WORD(z,ix&0xfffff000);
+ r = expf(-z*z-(float)0.5625)*expf((z-x)*(z+x)+R/S);
+ if(hx>=0) return one-r/x; else return r/x-one;
+}
+
+float
+erfcf(float x)
+{
+ int32_t hx,ix;
+ float R,S,P,Q,s,y,z,r;
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7f800000) { /* erfc(nan)=nan */
+ /* erfc(+-inf)=0,2 */
+ return (float)(((uint32_t)hx>>31)<<1)+one/x;
+ }
+
+ if(ix < 0x3f580000) { /* |x|<0.84375 */
+ if(ix < 0x23800000) /* |x|<2**-56 */
+ return one-x;
+ z = x*x;
+ r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
+ s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
+ y = r/s;
+ if(hx < 0x3e800000) { /* x<1/4 */
+ return one-(x+x*y);
+ } else {
+ r = x*y;
+ r += (x-half);
+ return half - r ;
+ }
+ }
+ if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
+ s = fabsf(x)-one;
+ P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
+ Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
+ if(hx>=0) {
+ z = one-erx; return z - P/Q;
+ } else {
+ z = erx+P/Q; return one+z;
+ }
+ }
+ if (ix < 0x41e00000) { /* |x|<28 */
+ x = fabsf(x);
+ s = one/(x*x);
+ if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
+ R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
+ ra5+s*(ra6+s*ra7))))));
+ S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
+ sa5+s*(sa6+s*(sa7+s*sa8)))))));
+ } else { /* |x| >= 1/.35 ~ 2.857143 */
+ if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
+ R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
+ rb5+s*rb6)))));
+ S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
+ sb5+s*(sb6+s*sb7))))));
+ }
+ GET_FLOAT_WORD(ix,x);
+ SET_FLOAT_WORD(z,ix&0xfffff000);
+ r = expf(-z*z-(float)0.5625)*
+ expf((z-x)*(z+x)+R/S);
+ if(hx>0) return r/x; else return two-r/x;
+ } else {
+ if(hx>0) return tiny*tiny; else return two-tiny;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_expm1.c b/05/musl-0.6.0/src/math/s_expm1.c
new file mode 100644
index 0000000..6f1f667
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_expm1.c
@@ -0,0 +1,217 @@
+/* @(#)s_expm1.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* expm1(x)
+ * Returns exp(x)-1, the exponential of x minus 1.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
+ *
+ * Here a correction term c will be computed to compensate
+ * the error in r when rounded to a floating-point number.
+ *
+ * 2. Approximating expm1(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Since
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+ * we define R1(r*r) by
+ * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+ * That is,
+ * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+ * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+ * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+ * We use a special Reme algorithm on [0,0.347] to generate
+ * a polynomial of degree 5 in r*r to approximate R1. The
+ * maximum error of this polynomial approximation is bounded
+ * by 2**-61. In other words,
+ * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+ * where Q1 = -1.6666666666666567384E-2,
+ * Q2 = 3.9682539681370365873E-4,
+ * Q3 = -9.9206344733435987357E-6,
+ * Q4 = 2.5051361420808517002E-7,
+ * Q5 = -6.2843505682382617102E-9;
+ * (where z=r*r, and the values of Q1 to Q5 are listed below)
+ * with error bounded by
+ * | 5 | -61
+ * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
+ * | |
+ *
+ * expm1(r) = exp(r)-1 is then computed by the following
+ * specific way which minimize the accumulation rounding error:
+ * 2 3
+ * r r [ 3 - (R1 + R1*r/2) ]
+ * expm1(r) = r + --- + --- * [--------------------]
+ * 2 2 [ 6 - r*(3 - R1*r/2) ]
+ *
+ * To compensate the error in the argument reduction, we use
+ * expm1(r+c) = expm1(r) + c + expm1(r)*c
+ * ~ expm1(r) + c + r*c
+ * Thus c+r*c will be added in as the correction terms for
+ * expm1(r+c). Now rearrange the term to avoid optimization
+ * screw up:
+ * ( 2 2 )
+ * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
+ * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+ * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
+ * ( )
+ *
+ * = r - E
+ * 3. Scale back to obtain expm1(x):
+ * From step 1, we have
+ * expm1(x) = either 2^k*[expm1(r)+1] - 1
+ * = or 2^k*[expm1(r) + (1-2^-k)]
+ * 4. Implementation notes:
+ * (A). To save one multiplication, we scale the coefficient Qi
+ * to Qi*2^i, and replace z by (x^2)/2.
+ * (B). To achieve maximum accuracy, we compute expm1(x) by
+ * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+ * (ii) if k=0, return r-E
+ * (iii) if k=-1, return 0.5*(r-E)-0.5
+ * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
+ * else return 1.0+2.0*(r-E);
+ * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+ * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+ * (vii) return 2^k(1-((E+2^-k)-r))
+ *
+ * Special cases:
+ * expm1(INF) is INF, expm1(NaN) is NaN;
+ * expm1(-INF) is -1, and
+ * for finite argument, only expm1(0)=0 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then expm1(x) overflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+one = 1.0,
+huge = 1.0e+300,
+tiny = 1.0e-300,
+o_threshold = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
+ln2_hi = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
+ln2_lo = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
+invln2 = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
+ /* scaled coefficients related to expm1 */
+Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+Q2 = 1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
+Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+Q4 = 4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
+Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+
+double
+expm1(double x)
+{
+ double y,hi,lo,c=0.0,t,e,hxs,hfx,r1;
+ int32_t k,xsb;
+ uint32_t hx;
+
+ GET_HIGH_WORD(hx,x);
+ xsb = hx&0x80000000; /* sign bit of x */
+ if(xsb==0) y=x; else y= -x; /* y = |x| */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out huge and non-finite argument */
+ if(hx >= 0x4043687A) { /* if |x|>=56*ln2 */
+ if(hx >= 0x40862E42) { /* if |x|>=709.78... */
+ if(hx>=0x7ff00000) {
+ uint32_t low;
+ GET_LOW_WORD(low,x);
+ if(((hx&0xfffff)|low)!=0)
+ return x+x; /* NaN */
+ else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+ }
+ if(x > o_threshold) return huge*huge; /* overflow */
+ }
+ if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
+ if(x+tiny<0.0) /* raise inexact */
+ return tiny-one; /* return -1 */
+ }
+ }
+
+ /* argument reduction */
+ if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+ if(xsb==0)
+ {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
+ else
+ {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
+ } else {
+ k = invln2*x+((xsb==0)?0.5:-0.5);
+ t = k;
+ hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi - lo;
+ c = (hi-x)-lo;
+ }
+ else if(hx < 0x3c900000) { /* when |x|<2**-54, return x */
+ t = huge+x; /* return x with inexact flags when x!=0 */
+ return x - (t-(huge+x));
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ hfx = 0.5*x;
+ hxs = x*hfx;
+ r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+ t = 3.0-r1*hfx;
+ e = hxs*((r1-t)/(6.0 - x*t));
+ if(k==0) return x - (x*e-hxs); /* c is 0 */
+ else {
+ e = (x*(e-c)-c);
+ e -= hxs;
+ if(k== -1) return 0.5*(x-e)-0.5;
+ if(k==1) {
+ if(x < -0.25) return -2.0*(e-(x+0.5));
+ else return one+2.0*(x-e);
+ }
+ if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
+ uint32_t high;
+ y = one-(e-x);
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ return y-one;
+ }
+ t = one;
+ if(k<20) {
+ uint32_t high;
+ SET_HIGH_WORD(t,0x3ff00000 - (0x200000>>k)); /* t=1-2^-k */
+ y = t-(e-x);
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ } else {
+ uint32_t high;
+ SET_HIGH_WORD(t,((0x3ff-k)<<20)); /* 2^-k */
+ y = x-(e+t);
+ y += one;
+ GET_HIGH_WORD(high,y);
+ SET_HIGH_WORD(y,high+(k<<20)); /* add k to y's exponent */
+ }
+ }
+ return y;
+}
diff --git a/05/musl-0.6.0/src/math/s_expm1f.c b/05/musl-0.6.0/src/math/s_expm1f.c
new file mode 100644
index 0000000..b22cf0f
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_expm1f.c
@@ -0,0 +1,122 @@
+/* s_expm1f.c -- float version of s_expm1.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+one = 1.0,
+huge = 1.0e+30,
+tiny = 1.0e-30,
+o_threshold = 8.8721679688e+01,/* 0x42b17180 */
+ln2_hi = 6.9313812256e-01,/* 0x3f317180 */
+ln2_lo = 9.0580006145e-06,/* 0x3717f7d1 */
+invln2 = 1.4426950216e+00,/* 0x3fb8aa3b */
+ /* scaled coefficients related to expm1 */
+Q1 = -3.3333335072e-02, /* 0xbd088889 */
+Q2 = 1.5873016091e-03, /* 0x3ad00d01 */
+Q3 = -7.9365076090e-05, /* 0xb8a670cd */
+Q4 = 4.0082177293e-06, /* 0x36867e54 */
+Q5 = -2.0109921195e-07; /* 0xb457edbb */
+
+float
+expm1f(float x)
+{
+ float y,hi,lo,c=0.0,t,e,hxs,hfx,r1;
+ int32_t k,xsb;
+ uint32_t hx;
+
+ GET_FLOAT_WORD(hx,x);
+ xsb = hx&0x80000000; /* sign bit of x */
+ if(xsb==0) y=x; else y= -x; /* y = |x| */
+ hx &= 0x7fffffff; /* high word of |x| */
+
+ /* filter out huge and non-finite argument */
+ if(hx >= 0x4195b844) { /* if |x|>=27*ln2 */
+ if(hx >= 0x42b17218) { /* if |x|>=88.721... */
+ if(hx>0x7f800000)
+ return x+x; /* NaN */
+ if(hx==0x7f800000)
+ return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
+ if(x > o_threshold) return huge*huge; /* overflow */
+ }
+ if(xsb!=0) { /* x < -27*ln2, return -1.0 with inexact */
+ if(x+tiny<(float)0.0) /* raise inexact */
+ return tiny-one; /* return -1 */
+ }
+ }
+
+ /* argument reduction */
+ if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
+ if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
+ if(xsb==0)
+ {hi = x - ln2_hi; lo = ln2_lo; k = 1;}
+ else
+ {hi = x + ln2_hi; lo = -ln2_lo; k = -1;}
+ } else {
+ k = invln2*x+((xsb==0)?(float)0.5:(float)-0.5);
+ t = k;
+ hi = x - t*ln2_hi; /* t*ln2_hi is exact here */
+ lo = t*ln2_lo;
+ }
+ x = hi - lo;
+ c = (hi-x)-lo;
+ }
+ else if(hx < 0x33000000) { /* when |x|<2**-25, return x */
+ t = huge+x; /* return x with inexact flags when x!=0 */
+ return x - (t-(huge+x));
+ }
+ else k = 0;
+
+ /* x is now in primary range */
+ hfx = (float)0.5*x;
+ hxs = x*hfx;
+ r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
+ t = (float)3.0-r1*hfx;
+ e = hxs*((r1-t)/((float)6.0 - x*t));
+ if(k==0) return x - (x*e-hxs); /* c is 0 */
+ else {
+ e = (x*(e-c)-c);
+ e -= hxs;
+ if(k== -1) return (float)0.5*(x-e)-(float)0.5;
+ if(k==1) {
+ if(x < (float)-0.25) return -(float)2.0*(e-(x+(float)0.5));
+ else return one+(float)2.0*(x-e);
+ }
+ if (k <= -2 || k>56) { /* suffice to return exp(x)-1 */
+ int32_t i;
+ y = one-(e-x);
+ GET_FLOAT_WORD(i,y);
+ SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
+ return y-one;
+ }
+ t = one;
+ if(k<23) {
+ int32_t i;
+ SET_FLOAT_WORD(t,0x3f800000 - (0x1000000>>k)); /* t=1-2^-k */
+ y = t-(e-x);
+ GET_FLOAT_WORD(i,y);
+ SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
+ } else {
+ int32_t i;
+ SET_FLOAT_WORD(t,((0x7f-k)<<23)); /* 2^-k */
+ y = x-(e+t);
+ y += one;
+ GET_FLOAT_WORD(i,y);
+ SET_FLOAT_WORD(y,i+(k<<23)); /* add k to y's exponent */
+ }
+ }
+ return y;
+}
diff --git a/05/musl-0.6.0/src/math/s_fabs.c b/05/musl-0.6.0/src/math/s_fabs.c
new file mode 100644
index 0000000..7443325
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_fabs.c
@@ -0,0 +1,27 @@
+/* @(#)s_fabs.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * fabs(x) returns the absolute value of x.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+fabs(double x)
+{
+ uint32_t high;
+ GET_HIGH_WORD(high,x);
+ SET_HIGH_WORD(x,high&0x7fffffff);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_fabsf.c b/05/musl-0.6.0/src/math/s_fabsf.c
new file mode 100644
index 0000000..655d57d
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_fabsf.c
@@ -0,0 +1,30 @@
+/* s_fabsf.c -- float version of s_fabs.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * fabsf(x) returns the absolute value of x.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+fabsf(float x)
+{
+ uint32_t ix;
+ GET_FLOAT_WORD(ix,x);
+ SET_FLOAT_WORD(x,ix&0x7fffffff);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_floor.c b/05/musl-0.6.0/src/math/s_floor.c
new file mode 100644
index 0000000..273cf6f
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_floor.c
@@ -0,0 +1,69 @@
+/* @(#)s_floor.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * floor(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to floor(x).
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double huge = 1.0e300;
+
+double
+floor(double x)
+{
+ int32_t i0,i1,j0;
+ uint32_t i,j;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
+ if(i0>=0) {i0=i1=0;}
+ else if(((i0&0x7fffffff)|i1)!=0)
+ { i0=0xbff00000;i1=0;}
+ }
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0<0) i0 += (0x00100000)>>j0;
+ i0 &= (~i); i1=0;
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ if(i0<0) {
+ if(j0==20) i0+=1;
+ else {
+ j = i1+(1<<(52-j0));
+ if(j<i1) i0 +=1 ; /* got a carry */
+ i1=j;
+ }
+ }
+ i1 &= (~i);
+ }
+ }
+ INSERT_WORDS(x,i0,i1);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_floorf.c b/05/musl-0.6.0/src/math/s_floorf.c
new file mode 100644
index 0000000..1164dec
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_floorf.c
@@ -0,0 +1,58 @@
+/* s_floorf.c -- float version of s_floor.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * floorf(x)
+ * Return x rounded toward -inf to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to floorf(x).
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float huge = 1.0e30;
+
+float
+floorf(float x)
+{
+ int32_t i0,j0;
+ uint32_t i;
+ GET_FLOAT_WORD(i0,x);
+ j0 = ((i0>>23)&0xff)-0x7f;
+ if(j0<23) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
+ if(i0>=0) {i0=0;}
+ else if((i0&0x7fffffff)!=0)
+ { i0=0xbf800000;}
+ }
+ } else {
+ i = (0x007fffff)>>j0;
+ if((i0&i)==0) return x; /* x is integral */
+ if(huge+x>(float)0.0) { /* raise inexact flag */
+ if(i0<0) i0 += (0x00800000)>>j0;
+ i0 &= (~i);
+ }
+ }
+ } else {
+ if(j0==0x80) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ }
+ SET_FLOAT_WORD(x,i0);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_ilogb.c b/05/musl-0.6.0/src/math/s_ilogb.c
new file mode 100644
index 0000000..f1ac498
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_ilogb.c
@@ -0,0 +1,45 @@
+/* @(#)s_ilogb.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* ilogb(double x)
+ * return the binary exponent of non-zero x
+ * ilogb(0) = FP_ILOGB0
+ * ilogb(NaN) = FP_ILOGBNAN (no signal is raised)
+ * ilogb(inf) = INT_MAX (no signal is raised)
+ */
+
+#include <limits.h>
+
+#include <math.h>
+#include "math_private.h"
+
+int ilogb(double x)
+{
+ int32_t hx,lx,ix;
+
+ EXTRACT_WORDS(hx,lx,x);
+ hx &= 0x7fffffff;
+ if(hx<0x00100000) {
+ if((hx|lx)==0)
+ return FP_ILOGB0;
+ else /* subnormal x */
+ if(hx==0) {
+ for (ix = -1043; lx>0; lx<<=1) ix -=1;
+ } else {
+ for (ix = -1022,hx<<=11; hx>0; hx<<=1) ix -=1;
+ }
+ return ix;
+ }
+ else if (hx<0x7ff00000) return (hx>>20)-1023;
+ else if (hx>0x7ff00000 || lx!=0) return FP_ILOGBNAN;
+ else return INT_MAX;
+}
diff --git a/05/musl-0.6.0/src/math/s_ilogbf.c b/05/musl-0.6.0/src/math/s_ilogbf.c
new file mode 100644
index 0000000..30359fe
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_ilogbf.c
@@ -0,0 +1,37 @@
+/* s_ilogbf.c -- float version of s_ilogb.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <limits.h>
+
+#include <math.h>
+#include "math_private.h"
+
+int ilogbf(float x)
+{
+ int32_t hx,ix;
+
+ GET_FLOAT_WORD(hx,x);
+ hx &= 0x7fffffff;
+ if(hx<0x00800000) {
+ if(hx==0)
+ return FP_ILOGB0;
+ else /* subnormal x */
+ for (ix = -126,hx<<=8; hx>0; hx<<=1) ix -=1;
+ return ix;
+ }
+ else if (hx<0x7f800000) return (hx>>23)-127;
+ else if (hx>0x7f800000) return FP_ILOGBNAN;
+ else return INT_MAX;
+}
diff --git a/05/musl-0.6.0/src/math/s_ldexp.c b/05/musl-0.6.0/src/math/s_ldexp.c
new file mode 100644
index 0000000..f4d1cd6
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_ldexp.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+double ldexp(double x, int n)
+{
+ return scalbn(x, n);
+}
diff --git a/05/musl-0.6.0/src/math/s_ldexpf.c b/05/musl-0.6.0/src/math/s_ldexpf.c
new file mode 100644
index 0000000..3bad5f3
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_ldexpf.c
@@ -0,0 +1,6 @@
+#include <math.h>
+
+float ldexpf(float x, int n)
+{
+ return scalbnf(x, n);
+}
diff --git a/05/musl-0.6.0/src/math/s_llrint.c b/05/musl-0.6.0/src/math/s_llrint.c
new file mode 100644
index 0000000..2b1e00d
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_llrint.c
@@ -0,0 +1,8 @@
+#include <math.h>
+
+// FIXME: incorrect exception behavior
+
+long long llrint(double x)
+{
+ return rint(x);
+}
diff --git a/05/musl-0.6.0/src/math/s_log1p.c b/05/musl-0.6.0/src/math/s_log1p.c
new file mode 100644
index 0000000..886d5ab
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_log1p.c
@@ -0,0 +1,157 @@
+/* @(#)s_log1p.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* double log1p(double x)
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * 1+x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * Note. If k=0, then f=x is exact. However, if k!=0, then f
+ * may not be representable exactly. In that case, a correction
+ * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+ * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+ * and add back the correction term c/u.
+ * (Note: when x > 2**53, one can simply return log(x))
+ *
+ * 2. Approximation of log1p(f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
+ * (the values of Lp1 to Lp7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lp1*s +...+Lp7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *
+ * 3. Finally, log1p(x) = k*ln2 + log1p(f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log1p(x) is NaN with signal if x < -1 (including -INF) ;
+ * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+ * log1p(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ *
+ * Note: Assuming log() return accurate answer, the following
+ * algorithm can be used to compute log1p(x) to within a few ULP:
+ *
+ * u = 1+x;
+ * if(u==1.0) return x ; else
+ * return log(u)*(x/(u-1.0));
+ *
+ * See HP-15C Advanced Functions Handbook, p.193.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
+two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
+Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
+Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
+Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
+Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
+Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
+Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
+Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+static const double zero = 0.0;
+
+double
+log1p(double x)
+{
+ double hfsq,f=0,c=0,s,z,R,u;
+ int32_t k,hx,hu=0,ax;
+
+ GET_HIGH_WORD(hx,x);
+ ax = hx&0x7fffffff;
+
+ k = 1;
+ if (hx < 0x3FDA827A) { /* x < 0.41422 */
+ if(ax>=0x3ff00000) { /* x <= -1.0 */
+ if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
+ else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
+ }
+ if(ax<0x3e200000) { /* |x| < 2**-29 */
+ if(two54+x>zero /* raise inexact */
+ &&ax<0x3c900000) /* |x| < 2**-54 */
+ return x;
+ else
+ return x - x*x*0.5;
+ }
+ if(hx>0||hx<=((int32_t)0xbfd2bec3)) {
+ k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
+ }
+ if (hx >= 0x7ff00000) return x+x;
+ if(k!=0) {
+ if(hx<0x43400000) {
+ u = 1.0+x;
+ GET_HIGH_WORD(hu,u);
+ k = (hu>>20)-1023;
+ c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
+ c /= u;
+ } else {
+ u = x;
+ GET_HIGH_WORD(hu,u);
+ k = (hu>>20)-1023;
+ c = 0;
+ }
+ hu &= 0x000fffff;
+ if(hu<0x6a09e) {
+ SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */
+ } else {
+ k += 1;
+ SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */
+ hu = (0x00100000-hu)>>2;
+ }
+ f = u-1.0;
+ }
+ hfsq=0.5*f*f;
+ if(hu==0) { /* |f| < 2**-20 */
+ if(f==zero) { if(k==0) return zero;
+ else {c += k*ln2_lo; return k*ln2_hi+c;} }
+ R = hfsq*(1.0-0.66666666666666666*f);
+ if(k==0) return f-R; else
+ return k*ln2_hi-((R-(k*ln2_lo+c))-f);
+ }
+ s = f/(2.0+f);
+ z = s*s;
+ R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+}
diff --git a/05/musl-0.6.0/src/math/s_log1pf.c b/05/musl-0.6.0/src/math/s_log1pf.c
new file mode 100644
index 0000000..dcdd6bb
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_log1pf.c
@@ -0,0 +1,96 @@
+/* s_log1pf.c -- float version of s_log1p.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
+two25 = 3.355443200e+07, /* 0x4c000000 */
+Lp1 = 6.6666668653e-01, /* 3F2AAAAB */
+Lp2 = 4.0000000596e-01, /* 3ECCCCCD */
+Lp3 = 2.8571429849e-01, /* 3E924925 */
+Lp4 = 2.2222198546e-01, /* 3E638E29 */
+Lp5 = 1.8183572590e-01, /* 3E3A3325 */
+Lp6 = 1.5313838422e-01, /* 3E1CD04F */
+Lp7 = 1.4798198640e-01; /* 3E178897 */
+
+static const float zero = 0.0;
+
+float
+log1pf(float x)
+{
+ float hfsq,f=0,c=0,s,z,R,u;
+ int32_t k,hx,hu=0,ax;
+
+ GET_FLOAT_WORD(hx,x);
+ ax = hx&0x7fffffff;
+
+ k = 1;
+ if (hx < 0x3ed413d7) { /* x < 0.41422 */
+ if(ax>=0x3f800000) { /* x <= -1.0 */
+ if(x==(float)-1.0) return -two25/zero; /* log1p(-1)=+inf */
+ else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
+ }
+ if(ax<0x31000000) { /* |x| < 2**-29 */
+ if(two25+x>zero /* raise inexact */
+ &&ax<0x24800000) /* |x| < 2**-54 */
+ return x;
+ else
+ return x - x*x*(float)0.5;
+ }
+ if(hx>0||hx<=((int32_t)0xbe95f61f)) {
+ k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
+ }
+ if (hx >= 0x7f800000) return x+x;
+ if(k!=0) {
+ if(hx<0x5a000000) {
+ u = (float)1.0+x;
+ GET_FLOAT_WORD(hu,u);
+ k = (hu>>23)-127;
+ /* correction term */
+ c = (k>0)? (float)1.0-(u-x):x-(u-(float)1.0);
+ c /= u;
+ } else {
+ u = x;
+ GET_FLOAT_WORD(hu,u);
+ k = (hu>>23)-127;
+ c = 0;
+ }
+ hu &= 0x007fffff;
+ if(hu<0x3504f7) {
+ SET_FLOAT_WORD(u,hu|0x3f800000);/* normalize u */
+ } else {
+ k += 1;
+ SET_FLOAT_WORD(u,hu|0x3f000000); /* normalize u/2 */
+ hu = (0x00800000-hu)>>2;
+ }
+ f = u-(float)1.0;
+ }
+ hfsq=(float)0.5*f*f;
+ if(hu==0) { /* |f| < 2**-20 */
+ if(f==zero) { if(k==0) return zero;
+ else {c += k*ln2_lo; return k*ln2_hi+c;} }
+ R = hfsq*((float)1.0-(float)0.66666666666666666*f);
+ if(k==0) return f-R; else
+ return k*ln2_hi-((R-(k*ln2_lo+c))-f);
+ }
+ s = f/((float)2.0+f);
+ z = s*s;
+ R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
+ if(k==0) return f-(hfsq-s*(hfsq+R)); else
+ return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+}
diff --git a/05/musl-0.6.0/src/math/s_logb.c b/05/musl-0.6.0/src/math/s_logb.c
new file mode 100644
index 0000000..be399c7
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_logb.c
@@ -0,0 +1,34 @@
+/* @(#)s_logb.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * double logb(x)
+ * IEEE 754 logb. Included to pass IEEE test suite. Not recommend.
+ * Use ilogb instead.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+logb(double x)
+{
+ int32_t lx,ix;
+ EXTRACT_WORDS(ix,lx,x);
+ ix &= 0x7fffffff; /* high |x| */
+ if((ix|lx)==0) return -1.0/fabs(x);
+ if(ix>=0x7ff00000) return x*x;
+ if((ix>>=20)==0) /* IEEE 754 logb */
+ return -1022.0;
+ else
+ return (double) (ix-1023);
+}
diff --git a/05/musl-0.6.0/src/math/s_logbf.c b/05/musl-0.6.0/src/math/s_logbf.c
new file mode 100644
index 0000000..747664d
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_logbf.c
@@ -0,0 +1,31 @@
+/* s_logbf.c -- float version of s_logb.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+logbf(float x)
+{
+ int32_t ix;
+ GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff; /* high |x| */
+ if(ix==0) return (float)-1.0/fabsf(x);
+ if(ix>=0x7f800000) return x*x;
+ if((ix>>=23)==0) /* IEEE 754 logb */
+ return -126.0;
+ else
+ return (float) (ix-127);
+}
diff --git a/05/musl-0.6.0/src/math/s_lrint.c b/05/musl-0.6.0/src/math/s_lrint.c
new file mode 100644
index 0000000..da8e198
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_lrint.c
@@ -0,0 +1,8 @@
+#include <math.h>
+
+// FIXME: incorrect exception behavior
+
+long lrint(double x)
+{
+ return rint(x);
+}
diff --git a/05/musl-0.6.0/src/math/s_lrintf.c b/05/musl-0.6.0/src/math/s_lrintf.c
new file mode 100644
index 0000000..d0b469b
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_lrintf.c
@@ -0,0 +1,8 @@
+#include <math.h>
+
+// FIXME: incorrect exception behavior
+
+long lrintf(float x)
+{
+ return rintf(x);
+}
diff --git a/05/musl-0.6.0/src/math/s_modf.c b/05/musl-0.6.0/src/math/s_modf.c
new file mode 100644
index 0000000..a5528d6
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_modf.c
@@ -0,0 +1,71 @@
+/* @(#)s_modf.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * modf(double x, double *iptr)
+ * return fraction part of x, and return x's integral part in *iptr.
+ * Method:
+ * Bit twiddling.
+ *
+ * Exception:
+ * No exception.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one = 1.0;
+
+double
+modf(double x, double *iptr)
+{
+ int32_t i0,i1,j0;
+ uint32_t i;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff; /* exponent of x */
+ if(j0<20) { /* integer part in high x */
+ if(j0<0) { /* |x|<1 */
+ INSERT_WORDS(*iptr,i0&0x80000000,0); /* *iptr = +-0 */
+ return x;
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) { /* x is integral */
+ uint32_t high;
+ *iptr = x;
+ GET_HIGH_WORD(high,x);
+ INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */
+ return x;
+ } else {
+ INSERT_WORDS(*iptr,i0&(~i),0);
+ return x - *iptr;
+ }
+ }
+ } else if (j0>51) { /* no fraction part */
+ uint32_t high;
+ *iptr = x*one;
+ GET_HIGH_WORD(high,x);
+ INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */
+ return x;
+ } else { /* fraction part in low x */
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) { /* x is integral */
+ uint32_t high;
+ *iptr = x;
+ GET_HIGH_WORD(high,x);
+ INSERT_WORDS(x,high&0x80000000,0); /* return +-0 */
+ return x;
+ } else {
+ INSERT_WORDS(*iptr,i0,i1&(~i));
+ return x - *iptr;
+ }
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_modff.c b/05/musl-0.6.0/src/math/s_modff.c
new file mode 100644
index 0000000..de4dfd2
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_modff.c
@@ -0,0 +1,52 @@
+/* s_modff.c -- float version of s_modf.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one = 1.0;
+
+float
+modff(float x, float *iptr)
+{
+ int32_t i0,j0;
+ uint32_t i;
+ GET_FLOAT_WORD(i0,x);
+ j0 = ((i0>>23)&0xff)-0x7f; /* exponent of x */
+ if(j0<23) { /* integer part in x */
+ if(j0<0) { /* |x|<1 */
+ SET_FLOAT_WORD(*iptr,i0&0x80000000); /* *iptr = +-0 */
+ return x;
+ } else {
+ i = (0x007fffff)>>j0;
+ if((i0&i)==0) { /* x is integral */
+ uint32_t ix;
+ *iptr = x;
+ GET_FLOAT_WORD(ix,x);
+ SET_FLOAT_WORD(x,ix&0x80000000); /* return +-0 */
+ return x;
+ } else {
+ SET_FLOAT_WORD(*iptr,i0&(~i));
+ return x - *iptr;
+ }
+ }
+ } else { /* no fraction part */
+ uint32_t ix;
+ *iptr = x*one;
+ GET_FLOAT_WORD(ix,x);
+ SET_FLOAT_WORD(x,ix&0x80000000); /* return +-0 */
+ return x;
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_nextafter.c b/05/musl-0.6.0/src/math/s_nextafter.c
new file mode 100644
index 0000000..46d298e
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_nextafter.c
@@ -0,0 +1,72 @@
+/* @(#)s_nextafter.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* IEEE functions
+ * nextafter(x,y)
+ * return the next machine floating-point number of x in the
+ * direction toward y.
+ * Special cases:
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+nextafter(double x, double y)
+{
+ volatile double t;
+ int32_t hx,hy,ix,iy;
+ uint32_t lx,ly;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hy,ly,y);
+ ix = hx&0x7fffffff; /* |x| */
+ iy = hy&0x7fffffff; /* |y| */
+
+ if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || /* x is nan */
+ ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) /* y is nan */
+ return x+y;
+ if(x==y) return y; /* x=y, return y */
+ if((ix|lx)==0) { /* x == 0 */
+ INSERT_WORDS(x,hy&0x80000000,1); /* return +-minsubnormal */
+ t = x*x;
+ if(t==x) return t; else return x; /* raise underflow flag */
+ }
+ if(hx>=0) { /* x > 0 */
+ if(hx>hy||((hx==hy)&&(lx>ly))) { /* x > y, x -= ulp */
+ if(lx==0) hx -= 1;
+ lx -= 1;
+ } else { /* x < y, x += ulp */
+ lx += 1;
+ if(lx==0) hx += 1;
+ }
+ } else { /* x < 0 */
+ if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){/* x < y, x -= ulp */
+ if(lx==0) hx -= 1;
+ lx -= 1;
+ } else { /* x > y, x += ulp */
+ lx += 1;
+ if(lx==0) hx += 1;
+ }
+ }
+ hy = hx&0x7ff00000;
+ if(hy>=0x7ff00000) return x+x; /* overflow */
+ if(hy<0x00100000) { /* underflow */
+ t = x*x;
+ if(t!=x) { /* raise underflow flag */
+ INSERT_WORDS(y,hx,lx);
+ return y;
+ }
+ }
+ INSERT_WORDS(x,hx,lx);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_nextafterf.c b/05/musl-0.6.0/src/math/s_nextafterf.c
new file mode 100644
index 0000000..7ce0883
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_nextafterf.c
@@ -0,0 +1,63 @@
+/* s_nextafterf.c -- float version of s_nextafter.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+nextafterf(float x, float y)
+{
+ volatile float t;
+ int32_t hx,hy,ix,iy;
+
+ GET_FLOAT_WORD(hx,x);
+ GET_FLOAT_WORD(hy,y);
+ ix = hx&0x7fffffff; /* |x| */
+ iy = hy&0x7fffffff; /* |y| */
+
+ if((ix>0x7f800000) || /* x is nan */
+ (iy>0x7f800000)) /* y is nan */
+ return x+y;
+ if(x==y) return y; /* x=y, return y */
+ if(ix==0) { /* x == 0 */
+ SET_FLOAT_WORD(x,(hy&0x80000000)|1);/* return +-minsubnormal */
+ t = x*x;
+ if(t==x) return t; else return x; /* raise underflow flag */
+ }
+ if(hx>=0) { /* x > 0 */
+ if(hx>hy) { /* x > y, x -= ulp */
+ hx -= 1;
+ } else { /* x < y, x += ulp */
+ hx += 1;
+ }
+ } else { /* x < 0 */
+ if(hy>=0||hx>hy){ /* x < y, x -= ulp */
+ hx -= 1;
+ } else { /* x > y, x += ulp */
+ hx += 1;
+ }
+ }
+ hy = hx&0x7f800000;
+ if(hy>=0x7f800000) return x+x; /* overflow */
+ if(hy<0x00800000) { /* underflow */
+ t = x*x;
+ if(t!=x) { /* raise underflow flag */
+ SET_FLOAT_WORD(y,hx);
+ return y;
+ }
+ }
+ SET_FLOAT_WORD(x,hx);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_remquo.c b/05/musl-0.6.0/src/math/s_remquo.c
new file mode 100644
index 0000000..1a2992d
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_remquo.c
@@ -0,0 +1,149 @@
+/* @(#)e_fmod.c 1.3 95/01/18 */
+/*-
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double Zero[] = {0.0, -0.0,};
+
+/*
+ * Return the IEEE remainder and set *quo to the last n bits of the
+ * quotient, rounded to the nearest integer. We choose n=31 because
+ * we wind up computing all the integer bits of the quotient anyway as
+ * a side-effect of computing the remainder by the shift and subtract
+ * method. In practice, this is far more bits than are needed to use
+ * remquo in reduction algorithms.
+ */
+double
+remquo(double x, double y, int *quo)
+{
+ int32_t n,hx,hy,hz,ix,iy,sx,i;
+ uint32_t lx,ly,lz,q,sxy;
+
+ EXTRACT_WORDS(hx,lx,x);
+ EXTRACT_WORDS(hy,ly,y);
+ sxy = (hx ^ hy) & 0x80000000;
+ sx = hx&0x80000000; /* sign of x */
+ hx ^=sx; /* |x| */
+ hy &= 0x7fffffff; /* |y| */
+
+ /* purge off exception values */
+ if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
+ ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
+ return (x*y)/(x*y);
+ if(hx<=hy) {
+ if((hx<hy)||(lx<ly)) {
+ q = 0;
+ goto fixup; /* |x|<|y| return x or x-y */
+ }
+ if(lx==ly) {
+ *quo = 1;
+ return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
+ }
+ }
+
+ /* determine ix = ilogb(x) */
+ if(hx<0x00100000) { /* subnormal x */
+ if(hx==0) {
+ for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
+ } else {
+ for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
+ }
+ } else ix = (hx>>20)-1023;
+
+ /* determine iy = ilogb(y) */
+ if(hy<0x00100000) { /* subnormal y */
+ if(hy==0) {
+ for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
+ } else {
+ for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
+ }
+ } else iy = (hy>>20)-1023;
+
+ /* set up {hx,lx}, {hy,ly} and align y to x */
+ if(ix >= -1022)
+ hx = 0x00100000|(0x000fffff&hx);
+ else { /* subnormal x, shift x to normal */
+ n = -1022-ix;
+ if(n<=31) {
+ hx = (hx<<n)|(lx>>(32-n));
+ lx <<= n;
+ } else {
+ hx = lx<<(n-32);
+ lx = 0;
+ }
+ }
+ if(iy >= -1022)
+ hy = 0x00100000|(0x000fffff&hy);
+ else { /* subnormal y, shift y to normal */
+ n = -1022-iy;
+ if(n<=31) {
+ hy = (hy<<n)|(ly>>(32-n));
+ ly <<= n;
+ } else {
+ hy = ly<<(n-32);
+ ly = 0;
+ }
+ }
+
+ /* fix point fmod */
+ n = ix - iy;
+ q = 0;
+ while(n--) {
+ hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+ if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
+ else {hx = hz+hz+(lz>>31); lx = lz+lz; q++;}
+ q <<= 1;
+ }
+ hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
+ if(hz>=0) {hx=hz;lx=lz;q++;}
+
+ /* convert back to floating value and restore the sign */
+ if((hx|lx)==0) { /* return sign(x)*0 */
+ *quo = (sxy ? -q : q);
+ return Zero[(uint32_t)sx>>31];
+ }
+ while(hx<0x00100000) { /* normalize x */
+ hx = hx+hx+(lx>>31); lx = lx+lx;
+ iy -= 1;
+ }
+ if(iy>= -1022) { /* normalize output */
+ hx = ((hx-0x00100000)|((iy+1023)<<20));
+ } else { /* subnormal output */
+ n = -1022 - iy;
+ if(n<=20) {
+ lx = (lx>>n)|((uint32_t)hx<<(32-n));
+ hx >>= n;
+ } else if (n<=31) {
+ lx = (hx<<(32-n))|(lx>>n); hx = sx;
+ } else {
+ lx = hx>>(n-32); hx = sx;
+ }
+ }
+fixup:
+ INSERT_WORDS(x,hx,lx);
+ y = fabs(y);
+ if (y < 0x1p-1021) {
+ if (x+x>y || (x+x==y && (q & 1))) {
+ q++;
+ x-=y;
+ }
+ } else if (x>0.5*y || (x==0.5*y && (q & 1))) {
+ q++;
+ x-=y;
+ }
+ GET_HIGH_WORD(hx,x);
+ SET_HIGH_WORD(x,hx^sx);
+ q &= 0x7fffffff;
+ *quo = (sxy ? -q : q);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_remquof.c b/05/musl-0.6.0/src/math/s_remquof.c
new file mode 100644
index 0000000..be2a561
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_remquof.c
@@ -0,0 +1,118 @@
+/* @(#)e_fmod.c 1.3 95/01/18 */
+/*-
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float Zero[] = {0.0, -0.0,};
+
+/*
+ * Return the IEEE remainder and set *quo to the last n bits of the
+ * quotient, rounded to the nearest integer. We choose n=31 because
+ * we wind up computing all the integer bits of the quotient anyway as
+ * a side-effect of computing the remainder by the shift and subtract
+ * method. In practice, this is far more bits than are needed to use
+ * remquo in reduction algorithms.
+ */
+float
+remquof(float x, float y, int *quo)
+{
+ int32_t n,hx,hy,hz,ix,iy,sx,i;
+ uint32_t q,sxy;
+
+ GET_FLOAT_WORD(hx,x);
+ GET_FLOAT_WORD(hy,y);
+ sxy = (hx ^ hy) & 0x80000000;
+ sx = hx&0x80000000; /* sign of x */
+ hx ^=sx; /* |x| */
+ hy &= 0x7fffffff; /* |y| */
+
+ /* purge off exception values */
+ if(hy==0||hx>=0x7f800000||hy>0x7f800000) /* y=0,NaN;or x not finite */
+ return (x*y)/(x*y);
+ if(hx<hy) {
+ q = 0;
+ goto fixup; /* |x|<|y| return x or x-y */
+ } else if(hx==hy) {
+ *quo = 1;
+ return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
+ }
+
+ /* determine ix = ilogb(x) */
+ if(hx<0x00800000) { /* subnormal x */
+ for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
+ } else ix = (hx>>23)-127;
+
+ /* determine iy = ilogb(y) */
+ if(hy<0x00800000) { /* subnormal y */
+ for (iy = -126,i=(hy<<8); i>0; i<<=1) iy -=1;
+ } else iy = (hy>>23)-127;
+
+ /* set up {hx,lx}, {hy,ly} and align y to x */
+ if(ix >= -126)
+ hx = 0x00800000|(0x007fffff&hx);
+ else { /* subnormal x, shift x to normal */
+ n = -126-ix;
+ hx <<= n;
+ }
+ if(iy >= -126)
+ hy = 0x00800000|(0x007fffff&hy);
+ else { /* subnormal y, shift y to normal */
+ n = -126-iy;
+ hy <<= n;
+ }
+
+ /* fix point fmod */
+ n = ix - iy;
+ q = 0;
+ while(n--) {
+ hz=hx-hy;
+ if(hz<0) hx = hx << 1;
+ else {hx = hz << 1; q++;}
+ q <<= 1;
+ }
+ hz=hx-hy;
+ if(hz>=0) {hx=hz;q++;}
+
+ /* convert back to floating value and restore the sign */
+ if(hx==0) { /* return sign(x)*0 */
+ *quo = (sxy ? -q : q);
+ return Zero[(uint32_t)sx>>31];
+ }
+ while(hx<0x00800000) { /* normalize x */
+ hx <<= 1;
+ iy -= 1;
+ }
+ if(iy>= -126) { /* normalize output */
+ hx = ((hx-0x00800000)|((iy+127)<<23));
+ } else { /* subnormal output */
+ n = -126 - iy;
+ hx >>= n;
+ }
+fixup:
+ SET_FLOAT_WORD(x,hx);
+ y = fabsf(y);
+ if (y < 0x1p-125f) {
+ if (x+x>y || (x+x==y && (q & 1))) {
+ q++;
+ x-=y;
+ }
+ } else if (x>0.5f*y || (x==0.5f*y && (q & 1))) {
+ q++;
+ x-=y;
+ }
+ GET_FLOAT_WORD(hx,x);
+ SET_FLOAT_WORD(x,hx^sx);
+ q &= 0x7fffffff;
+ *quo = (sxy ? -q : q);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_rint.c b/05/musl-0.6.0/src/math/s_rint.c
new file mode 100644
index 0000000..c80e01e
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_rint.c
@@ -0,0 +1,80 @@
+/* @(#)s_rint.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * rint(x)
+ * Return x rounded to integral value according to the prevailing
+ * rounding mode.
+ * Method:
+ * Using floating addition.
+ * Exception:
+ * Inexact flag raised if x not equal to rint(x).
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+/*
+ * TWO23 is long double instead of double to avoid a bug in gcc. Without
+ * this, gcc thinks that TWO23[sx]+x and w-TWO23[sx] already have double
+ * precision and doesn't clip them to double precision when they are
+ * assigned and returned.
+ */
+static const /*long*/ double
+TWO52[2]={
+ 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
+ -4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
+};
+
+double
+rint(double x)
+{
+ int32_t i0,j0,sx;
+ uint32_t i,i1;
+ double w,t;
+ EXTRACT_WORDS(i0,i1,x);
+ sx = (i0>>31)&1;
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) {
+ if(((i0&0x7fffffff)|i1)==0) return x;
+ i1 |= (i0&0x0fffff);
+ i0 &= 0xfffe0000;
+ i0 |= ((i1|-i1)>>12)&0x80000;
+ SET_HIGH_WORD(x,i0);
+ w = TWO52[sx]+x;
+ t = w-TWO52[sx];
+ GET_HIGH_WORD(i0,t);
+ SET_HIGH_WORD(t,(i0&0x7fffffff)|(sx<<31));
+ return t;
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ i>>=1;
+ if(((i0&i)|i1)!=0) {
+ if(j0==19) i1 = 0x40000000; else
+ i0 = (i0&(~i))|((0x20000)>>j0);
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ i>>=1;
+ if((i1&i)!=0) i1 = (i1&(~i))|((0x40000000)>>(j0-20));
+ }
+ INSERT_WORDS(x,i0,i1);
+ w = TWO52[sx]+x;
+ return w-TWO52[sx];
+}
diff --git a/05/musl-0.6.0/src/math/s_rintf.c b/05/musl-0.6.0/src/math/s_rintf.c
new file mode 100644
index 0000000..c441870
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_rintf.c
@@ -0,0 +1,45 @@
+/* s_rintf.c -- float version of s_rint.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+TWO23[2]={
+ 8.3886080000e+06, /* 0x4b000000 */
+ -8.3886080000e+06, /* 0xcb000000 */
+};
+
+float
+rintf(float x)
+{
+ int32_t i0,j0,sx;
+ volatile float w,t; /* volatile works around gcc bug */
+ GET_FLOAT_WORD(i0,x);
+ sx = (i0>>31)&1;
+ j0 = ((i0>>23)&0xff)-0x7f;
+ if(j0<23) {
+ if(j0<0) {
+ if((i0&0x7fffffff)==0) return x;
+ w = TWO23[sx]+x;
+ t = w-TWO23[sx];
+ return t;
+ }
+ w = TWO23[sx]+x;
+ return w-TWO23[sx];
+ }
+ if(j0==0x80) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+}
diff --git a/05/musl-0.6.0/src/math/s_round.c b/05/musl-0.6.0/src/math/s_round.c
new file mode 100644
index 0000000..d5bea7a
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_round.c
@@ -0,0 +1,48 @@
+/*-
+ * Copyright (c) 2003, Steven G. Kargl
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <math.h>
+
+double
+round(double x)
+{
+ double t;
+
+ if (!isfinite(x))
+ return (x);
+
+ if (x >= 0.0) {
+ t = ceil(x);
+ if (t - x > 0.5)
+ t -= 1.0;
+ return (t);
+ } else {
+ t = ceil(-x);
+ if (t + x > 0.5)
+ t -= 1.0;
+ return (-t);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_roundf.c b/05/musl-0.6.0/src/math/s_roundf.c
new file mode 100644
index 0000000..c4fc3e1
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_roundf.c
@@ -0,0 +1,48 @@
+/*-
+ * Copyright (c) 2003, Steven G. Kargl
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice unmodified, this list of conditions, and the following
+ * disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+ * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+ * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+ * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+ * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <math.h>
+
+float
+roundf(float x)
+{
+ float t;
+
+ if (!isfinite(x))
+ return (x);
+
+ if (x >= 0.0) {
+ t = ceilf(x);
+ if (t - x > 0.5)
+ t -= 1.0;
+ return (t);
+ } else {
+ t = ceilf(-x);
+ if (t + x > 0.5)
+ t -= 1.0;
+ return (-t);
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_scalbln.c b/05/musl-0.6.0/src/math/s_scalbln.c
new file mode 100644
index 0000000..12b9391
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_scalbln.c
@@ -0,0 +1,61 @@
+/* @(#)s_scalbn.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * scalbn (double x, int n)
+ * scalbn(x,n) returns x* 2**n computed by exponent
+ * manipulation rather than by actually performing an
+ * exponentiation or a multiplication.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double
+two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
+twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
+huge = 1.0e+300,
+tiny = 1.0e-300;
+
+double
+scalbln (double x, long n)
+{
+ int32_t k,hx,lx;
+ EXTRACT_WORDS(hx,lx,x);
+ k = (hx&0x7ff00000)>>20; /* extract exponent */
+ if (k==0) { /* 0 or subnormal x */
+ if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
+ x *= two54;
+ GET_HIGH_WORD(hx,x);
+ k = ((hx&0x7ff00000)>>20) - 54;
+ if (n< -50000) return tiny*x; /*underflow*/
+ }
+ if (k==0x7ff) return x+x; /* NaN or Inf */
+ k = k+n;
+ if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
+ if (k > 0) /* normal result */
+ {SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20)); return x;}
+ if (k <= -54) {
+ if (n > 50000) /* in case integer overflow in n+k */
+ return huge*copysign(huge,x); /*overflow*/
+ else return tiny*copysign(tiny,x); /*underflow*/
+ }
+ k += 54; /* subnormal result */
+ SET_HIGH_WORD(x,(hx&0x800fffff)|(k<<20));
+ return x*twom54;
+}
+
+double
+scalbn (double x, int n)
+{
+ return scalbln(x, n);
+}
diff --git a/05/musl-0.6.0/src/math/s_scalblnf.c b/05/musl-0.6.0/src/math/s_scalblnf.c
new file mode 100644
index 0000000..21e7641
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_scalblnf.c
@@ -0,0 +1,57 @@
+/* s_scalbnf.c -- float version of s_scalbn.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float
+two25 = 3.355443200e+07, /* 0x4c000000 */
+twom25 = 2.9802322388e-08, /* 0x33000000 */
+huge = 1.0e+30,
+tiny = 1.0e-30;
+
+float
+scalblnf (float x, long n)
+{
+ int32_t k,ix;
+ GET_FLOAT_WORD(ix,x);
+ k = (ix&0x7f800000)>>23; /* extract exponent */
+ if (k==0) { /* 0 or subnormal x */
+ if ((ix&0x7fffffff)==0) return x; /* +-0 */
+ x *= two25;
+ GET_FLOAT_WORD(ix,x);
+ k = ((ix&0x7f800000)>>23) - 25;
+ if (n< -50000) return tiny*x; /*underflow*/
+ }
+ if (k==0xff) return x+x; /* NaN or Inf */
+ k = k+n;
+ if (k > 0xfe) return huge*copysignf(huge,x); /* overflow */
+ if (k > 0) /* normal result */
+ {SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23)); return x;}
+ if (k <= -25) {
+ if (n > 50000) /* in case integer overflow in n+k */
+ return huge*copysignf(huge,x); /*overflow*/
+ else return tiny*copysignf(tiny,x); /*underflow*/
+ }
+ k += 25; /* subnormal result */
+ SET_FLOAT_WORD(x,(ix&0x807fffff)|(k<<23));
+ return x*twom25;
+}
+
+float
+scalbnf (float x, int n)
+{
+ return scalblnf(x, n);
+}
diff --git a/05/musl-0.6.0/src/math/s_sin.c b/05/musl-0.6.0/src/math/s_sin.c
new file mode 100644
index 0000000..2a2774e
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_sin.c
@@ -0,0 +1,74 @@
+/* @(#)s_sin.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* sin(x)
+ * Return sine function of x.
+ *
+ * kernel function:
+ * __kernel_sin ... sine function on [-pi/4,pi/4]
+ * __kernel_cos ... cose function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+sin(double x)
+{
+ double y[2],z=0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
+
+ /* sin(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ switch(n&3) {
+ case 0: return __kernel_sin(y[0],y[1],1);
+ case 1: return __kernel_cos(y[0],y[1]);
+ case 2: return -__kernel_sin(y[0],y[1],1);
+ default:
+ return -__kernel_cos(y[0],y[1]);
+ }
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_sinf.c b/05/musl-0.6.0/src/math/s_sinf.c
new file mode 100644
index 0000000..d2b8e80
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_sinf.c
@@ -0,0 +1,45 @@
+/* s_sinf.c -- float version of s_sin.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+sinf(float x)
+{
+ float y[2],z=0.0;
+ int32_t n, ix;
+
+ GET_FLOAT_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0);
+
+ /* sin(Inf or NaN) is NaN */
+ else if (ix>=0x7f800000) return x-x;
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2f(x,y);
+ switch(n&3) {
+ case 0: return __kernel_sinf(y[0],y[1],1);
+ case 1: return __kernel_cosf(y[0],y[1]);
+ case 2: return -__kernel_sinf(y[0],y[1],1);
+ default:
+ return -__kernel_cosf(y[0],y[1]);
+ }
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_tan.c b/05/musl-0.6.0/src/math/s_tan.c
new file mode 100644
index 0000000..3333cb3
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_tan.c
@@ -0,0 +1,68 @@
+/* @(#)s_tan.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* tan(x)
+ * Return tangent function of x.
+ *
+ * kernel function:
+ * __kernel_tan ... tangent function on [-pi/4,pi/4]
+ * __ieee754_rem_pio2 ... argument reduction routine
+ *
+ * Method.
+ * Let S,C and T denote the sin, cos and tan respectively on
+ * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
+ * in [-pi/4 , +pi/4], and let n = k mod 4.
+ * We have
+ *
+ * n sin(x) cos(x) tan(x)
+ * ----------------------------------------------------------
+ * 0 S C T
+ * 1 C -S -1/T
+ * 2 -S -C T
+ * 3 -C S -1/T
+ * ----------------------------------------------------------
+ *
+ * Special cases:
+ * Let trig be any of sin, cos, or tan.
+ * trig(+-INF) is NaN, with signals;
+ * trig(NaN) is that NaN;
+ *
+ * Accuracy:
+ * TRIG(x) returns trig(x) nearly rounded
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+double
+tan(double x)
+{
+ double y[2],z=0.0;
+ int32_t n, ix;
+
+ /* High word of x. */
+ GET_HIGH_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
+
+ /* tan(Inf or NaN) is NaN */
+ else if (ix>=0x7ff00000) return x-x; /* NaN */
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2(x,y);
+ return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
+ -1 -- n odd */
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_tanf.c b/05/musl-0.6.0/src/math/s_tanf.c
new file mode 100644
index 0000000..660dd9c
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_tanf.c
@@ -0,0 +1,40 @@
+/* s_tanf.c -- float version of s_tan.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+float
+tanf(float x)
+{
+ float y[2],z=0.0;
+ int32_t n, ix;
+
+ GET_FLOAT_WORD(ix,x);
+
+ /* |x| ~< pi/4 */
+ ix &= 0x7fffffff;
+ if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1);
+
+ /* tan(Inf or NaN) is NaN */
+ else if (ix>=0x7f800000) return x-x; /* NaN */
+
+ /* argument reduction needed */
+ else {
+ n = __ieee754_rem_pio2f(x,y);
+ return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
+ -1 -- n odd */
+ }
+}
diff --git a/05/musl-0.6.0/src/math/s_tanh.c b/05/musl-0.6.0/src/math/s_tanh.c
new file mode 100644
index 0000000..78b8e84
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_tanh.c
@@ -0,0 +1,74 @@
+/* @(#)s_tanh.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/* Tanh(x)
+ * Return the Hyperbolic Tangent of x
+ *
+ * Method :
+ * x -x
+ * e - e
+ * 0. tanh(x) is defined to be -----------
+ * x -x
+ * e + e
+ * 1. reduce x to non-negative by tanh(-x) = -tanh(x).
+ * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
+ * -t
+ * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
+ * t + 2
+ * 2
+ * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
+ * t + 2
+ * 22.0 < x <= INF : tanh(x) := 1.
+ *
+ * Special cases:
+ * tanh(NaN) is NaN;
+ * only tanh(0)=0 is exact for finite argument.
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double one=1.0, two=2.0, tiny = 1.0e-300;
+
+double
+tanh(double x)
+{
+ double t,z;
+ int32_t jx,ix;
+
+ /* High word of |x|. */
+ GET_HIGH_WORD(jx,x);
+ ix = jx&0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7ff00000) {
+ if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
+ else return one/x-one; /* tanh(NaN) = NaN */
+ }
+
+ /* |x| < 22 */
+ if (ix < 0x40360000) { /* |x|<22 */
+ if (ix<0x3c800000) /* |x|<2**-55 */
+ return x*(one+x); /* tanh(small) = small */
+ if (ix>=0x3ff00000) { /* |x|>=1 */
+ t = expm1(two*fabs(x));
+ z = one - two/(t+two);
+ } else {
+ t = expm1(-two*fabs(x));
+ z= -t/(t+two);
+ }
+ /* |x| > 22, return +-1 */
+ } else {
+ z = one - tiny; /* raised inexact flag */
+ }
+ return (jx>=0)? z: -z;
+}
diff --git a/05/musl-0.6.0/src/math/s_tanhf.c b/05/musl-0.6.0/src/math/s_tanhf.c
new file mode 100644
index 0000000..a082040
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_tanhf.c
@@ -0,0 +1,52 @@
+/* s_tanhf.c -- float version of s_tanh.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float one=1.0, two=2.0, tiny = 1.0e-30;
+
+float
+tanhf(float x)
+{
+ float t,z;
+ int32_t jx,ix;
+
+ GET_FLOAT_WORD(jx,x);
+ ix = jx&0x7fffffff;
+
+ /* x is INF or NaN */
+ if(ix>=0x7f800000) {
+ if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
+ else return one/x-one; /* tanh(NaN) = NaN */
+ }
+
+ /* |x| < 22 */
+ if (ix < 0x41b00000) { /* |x|<22 */
+ if (ix<0x24000000) /* |x|<2**-55 */
+ return x*(one+x); /* tanh(small) = small */
+ if (ix>=0x3f800000) { /* |x|>=1 */
+ t = expm1f(two*fabsf(x));
+ z = one - two/(t+two);
+ } else {
+ t = expm1f(-two*fabsf(x));
+ z= -t/(t+two);
+ }
+ /* |x| > 22, return +-1 */
+ } else {
+ z = one - tiny; /* raised inexact flag */
+ }
+ return (jx>=0)? z: -z;
+}
diff --git a/05/musl-0.6.0/src/math/s_trunc.c b/05/musl-0.6.0/src/math/s_trunc.c
new file mode 100644
index 0000000..02c6556
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_trunc.c
@@ -0,0 +1,58 @@
+/* @(#)s_floor.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * trunc(x)
+ * Return x rounded toward 0 to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to trunc(x).
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const double huge = 1.0e300;
+
+double
+trunc(double x)
+{
+ int32_t i0,i1,j0;
+ uint32_t i,j;
+ EXTRACT_WORDS(i0,i1,x);
+ j0 = ((i0>>20)&0x7ff)-0x3ff;
+ if(j0<20) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>0.0) {/* |x|<1, so return 0*sign(x) */
+ i0 &= 0x80000000U;
+ i1 = 0;
+ }
+ } else {
+ i = (0x000fffff)>>j0;
+ if(((i0&i)|i1)==0) return x; /* x is integral */
+ if(huge+x>0.0) { /* raise inexact flag */
+ i0 &= (~i); i1=0;
+ }
+ }
+ } else if (j0>51) {
+ if(j0==0x400) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ } else {
+ i = ((uint32_t)(0xffffffff))>>(j0-20);
+ if((i1&i)==0) return x; /* x is integral */
+ if(huge+x>0.0) /* raise inexact flag */
+ i1 &= (~i);
+ }
+ INSERT_WORDS(x,i0,i1);
+ return x;
+}
diff --git a/05/musl-0.6.0/src/math/s_truncf.c b/05/musl-0.6.0/src/math/s_truncf.c
new file mode 100644
index 0000000..c253e62
--- /dev/null
+++ b/05/musl-0.6.0/src/math/s_truncf.c
@@ -0,0 +1,50 @@
+/* @(#)s_floor.c 5.1 93/09/24 */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+/*
+ * truncf(x)
+ * Return x rounded toward 0 to integral value
+ * Method:
+ * Bit twiddling.
+ * Exception:
+ * Inexact flag raised if x not equal to truncf(x).
+ */
+
+#include <math.h>
+#include "math_private.h"
+
+static const float huge = 1.0e30F;
+
+float
+truncf(float x)
+{
+ int32_t i0,j0;
+ uint32_t i;
+ GET_FLOAT_WORD(i0,x);
+ j0 = ((i0>>23)&0xff)-0x7f;
+ if(j0<23) {
+ if(j0<0) { /* raise inexact if x != 0 */
+ if(huge+x>0.0F) /* |x|<1, so return 0*sign(x) */
+ i0 &= 0x80000000;
+ } else {
+ i = (0x007fffff)>>j0;
+ if((i0&i)==0) return x; /* x is integral */
+ if(huge+x>0.0F) /* raise inexact flag */
+ i0 &= (~i);
+ }
+ } else {
+ if(j0==0x80) return x+x; /* inf or NaN */
+ else return x; /* x is integral */
+ }
+ SET_FLOAT_WORD(x,i0);
+ return x;
+}