summaryrefslogtreecommitdiff
path: root/src/main.rs
blob: 2bcdd06711046cc6ec8c5d431f99f25f5b2e8460 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*
@TODO:
- fix rotation
- fullscreen key
- options for:
	- max framerate
	- mouse sensitivity
	- AA quality
	- # iterations, distance cutoff
*/

extern crate nalgebra;

pub mod sdf;
mod sdl;
pub mod win;

use nalgebra::{Matrix3, Matrix4, Rotation3, Vector3};
use std::time::Instant;

type Vec3 = Vector3<f32>;
type Mat3 = Matrix3<f32>;
type Mat4 = Matrix4<f32>;
type Rot3 = Rotation3<f32>;

struct View {
	pos: Vec3,
	yaw: f32,
	pitch: f32,
	level_set: f32,
}

impl Default for View {
	fn default() -> Self {
		// don't start out right next to the origin, since weird stuff might be happening there
		let pos = Vec3::new(0.0, 0.0, 4.0);

		Self {
			pos,
			yaw: 0.0,
			pitch: 0.0,
			level_set: 0.0,
		}
	}
}

impl View {
	/// `rotation() * vec3(0, 0, -1)` is the direction the camera is pointing
	fn rotation(&self) -> Mat3 {
		*Rot3::from_euler_angles(self.pitch, self.yaw, 0.0).matrix()
	}

	fn translation(&self) -> Mat4 {
		Mat4::new_translation(&self.pos)
	}

	#[allow(dead_code)]
	fn transform(&self) -> Mat4 {
		self.translation() * self.rotation().to_homogeneous()
	}
}

fn try_main() -> Result<(), String> {
	use sdf::{R3ToR};
	let funciton = R3ToR::smooth_min(
		R3ToR::sphere_f32(1.2),
		R3ToR::cube_f32(1.0)
	);
	let my_sdf = sdf::Sdf::from_function(funciton);

	let mut window = win::Window::new("AutoSDF", 1280, 720, true)
		.map_err(|e| format!("Error creating window: {e}"))?;

	let mut fshader_source = String::new();
	fshader_source.push_str(
		"
IN vec2 pos;
uniform mat3 u_rotation;
uniform vec3 u_translation;
uniform float u_time;
uniform float u_fov;
uniform float u_focal_length;
uniform float u_level_set;
",
	);
	my_sdf.to_glsl(&mut fshader_source);
	fshader_source.push_str(
		"
#define ITERATIONS 20
#define AA_X 1
#define AA_Y 1


float sdf_adjusted(vec3 p) {
	return sdf(p) - u_level_set;
}
#define sdf sdf_adjusted

vec3 normal(vec3 p)
{
// thanks to https://iquilezles.org/articles/normalsSDF/
    float h = 0.0001;
    vec2 k = vec2(1.,-1.);
    vec3 sdf_normal = k.xyy*sdf(p + k.xyy*h) + 
                      k.yyx*sdf(p + k.yyx*h) + 
                      k.yxy*sdf(p + k.yxy*h) + 
                      k.xxx*sdf(p + k.xxx*h);
    return normalize(sdf_normal);
}

void main() {
	float min_dist = 10.;
	vec2 inv_screen_size = 1.0 / vec2(1280.0, 720.0); // @TODO
	vec2 aa_delta = inv_screen_size / vec2(AA_X, AA_Y);
	vec3 final_color = vec3(0);
	for (int m = 0; m < AA_X; m++) {
	for (int n = 0; n < AA_Y; n++) {
	vec2 aa_offset = vec2(float(m), float(n)) * aa_delta;
	vec3 pos3d = vec3((pos + aa_offset) * sin(u_fov * 0.5), -1.0) * u_focal_length;
	vec3 p = u_rotation * pos3d;
	vec3 delta = normalize(p);
	p += u_translation;
	if (sdf(p) < 0.0) {
		// looking inside object
		o_color = vec4(1.0, 0.0, 1.0, 1.0);
		return;
	}
	int i;
	for (i = 0; i < ITERATIONS; i++) {
		float dist = sdf(p);
		min_dist = min(min_dist, dist);
		if (dist > 100.0) break;//little optimization
		p += dist * delta;
	}

	float threshold = 0.02;
	if (min_dist < threshold) {
		float L = 0.3 + max(0., dot(normal(p), normalize(vec3(.8,1,.6))));
		final_color += L * (1.0/threshold) * (threshold-min_dist) * vec3(1.0, 0.0, 0.0);
		break;
	}
	
	}
	}
	final_color *= 1.0 / (AA_X * AA_Y);
	o_color = vec4(final_color, 1.0);
}",
	);

	println!("{fshader_source}");

	let program = window
		.create_program(
			"attribute vec2 v_pos;
		OUT vec2 pos;
		uniform float u_aspect_ratio;
		
		void main() {
			pos = v_pos * vec2(u_aspect_ratio, 1.0);
			gl_Position = vec4(v_pos, 0.0, 1.0);
		}",
			&fshader_source,
		)
		.map_err(|e| format!("Error compiling shader:\n{e}"))?;

	let mut buffer = window.create_buffer();
	let data: &[[f32; 2]] = &[
		[-1.0, -1.0],
		[1.0, -1.0],
		[1.0, 1.0],
		[-1.0, -1.0],
		[1.0, 1.0],
		[-1.0, 1.0],
	];
	window.set_buffer_data(&mut buffer, data);
	let mut array = window.create_vertex_array(buffer, &program);
	window.array_attrib2f(&mut array, "v_pos", 0);

	let mut view = View::default();

	window.set_mouse_relative(true);

	let mut frame_time = Instant::now();
	let mut show_debug_info = false;
	let mut total_time = 0.0;

	'mainloop: loop {
		let frame_dt = frame_time.elapsed().as_secs_f32();
		frame_time = Instant::now();

		while let Some(event) = window.next_event() {
			use win::Event::*;
			use win::Key::*;
			match event {
				Quit | KeyDown(Escape) => break 'mainloop,
				KeyDown(F1) => show_debug_info = !show_debug_info,
				MouseMotion { xrel, yrel, .. } => {
					view.yaw -= xrel as f32 * frame_dt;
					view.pitch -= yrel as f32 * frame_dt;
				}
				_ => {}
			}
		}

		{
			// movement
			let mut dx = 0.0;
			let mut dy = 0.0;
			let mut dz = 0.0;
			let mut dl = 0.0;
			use win::Key::{
				Down, Left, NumPad3, NumPad9, PageDown, PageUp, Right, Up, A, D, E, M, N, Q, S, W,
			};
			if window.any_key_down(&[W, Up]) {
				dz -= 1.0;
			}
			if window.any_key_down(&[S, Down]) {
				dz += 1.0;
			}
			if window.any_key_down(&[A, Left]) {
				dx -= 1.0;
			}
			if window.any_key_down(&[D, Right]) {
				dx += 1.0;
			}
			if window.is_key_down(Q) {
				dy += 1.0;
			}
			if window.is_key_down(E) {
				dy -= 1.0;
			}
			if window.any_key_down(&[PageUp, NumPad9, M]) {
				dl += 1.0;
			}
			if window.any_key_down(&[PageDown, NumPad3, N]) {
				dl -= 1.0;
			}
			let motion = Vec3::new(dx, dy, dz);
			if let Some(motion) = motion.try_normalize(0.001) {
				let move_speed = 2.0;
				let motion = motion * frame_dt * move_speed;
				let motion = view.rotation() * motion;
				view.pos += motion;
			}

			let level_set_speed = 1.0;
			view.level_set += dl * frame_dt * level_set_speed;
		}

		window.viewport_full_screen();

		window.clear_screen(win::ColorF32::BLACK);
		window.use_program(&program);
		window.uniform1f("u_aspect_ratio", window.aspect_ratio());
		window.uniform1f("u_time", total_time);
		window.uniform1f("u_fov", std::f32::consts::PI * 0.25);
		window.uniform1f("u_focal_length", 1.0);
		window.uniform1f("u_level_set", view.level_set);
		window.uniform3x3f("u_rotation", view.rotation().as_slice());
		window.uniform3f_slice("u_translation", view.pos.as_slice());

		window.draw_array(&array);

		window.swap();
		if show_debug_info {
			println!("frame time = {:?}ms", frame_dt * 1000.0);
		}

		total_time += frame_dt;
	}

	Ok(())
}

fn main() {
	if let Err(e) = try_main() {
		win::display_error_message(&e);
	}
}