summaryrefslogtreecommitdiff
path: root/gen_random_proc_macro/src/lib.rs
blob: fa2d5ddd5e993fbc35caffbffd99a6328ee5ce30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
extern crate quote;
extern crate proc_macro2;
extern crate syn;

use proc_macro::TokenStream;
use proc_macro2::TokenStream as TokenStream2;
use proc_macro2::TokenTree as TokenTree2;
use std::str::FromStr;
use std::any::type_name;
use quote::quote;

#[proc_macro_derive(GenRandom, attributes(prob, scale, bias))]
pub fn gen_random_derive(input: TokenStream) -> TokenStream {
	// Construct a representation of Rust code as a syntax tree
	// that we can manipulate
	let ast = syn::parse(input).unwrap();
	// Build the trait implementation
	impl_gen_random(&ast)
}

fn get_attribute_literal(attrs: &[syn::Attribute], name: &str) -> Option<proc_macro2::Literal> {
	let attr = attrs.iter().find(|a| {
		let path = &a.path;
		if let Some(ident) = path.get_ident() {
			ident == name
		} else {
			false
		}
	})?;

	let tokens: TokenStream2 = attr.tokens.clone().into();
	let mut tokens: Vec<TokenTree2> = tokens.into_iter().collect();
	if tokens.len() != 2 {
		panic!("Expected {name} = <value>");
	}
	use TokenTree2::{Punct, Literal};
	match &tokens[0] {
		Punct(equals) if equals.as_char() == '=' => {}
		_ => panic!("Expected = after {name} attribute"),
	};
	
	let Literal(literal) = tokens.remove(1) else {
		panic!("Bad value for {name} attribute.");
	};
	Some(literal)
}

fn parse_attribute_value<T: FromStr>(attrs: &[syn::Attribute], name: &str) -> Option<T> {
	let literal = get_attribute_literal(attrs, name)?;
	let Ok(value) = literal.to_string().parse() else {
		panic!("Bad {} for {name} attribute", type_name::<T>())
	};
	Some(value)
}

fn generate_fields(fields: &syn::Fields) -> impl quote::ToTokens {
	let mut field_values = quote! {};
	for field in fields.iter() {
		if let Some(name) = &field.ident {
			field_values.extend(quote! {#name: });
		}
		let ty = &field.ty;
		field_values.extend(quote! { <#ty as GenRandom>::gen_random(rng) });
		
		if let Some(scale) = get_attribute_literal(&field.attrs, "scale") {
			field_values.extend(quote! { * #scale });
		}
		if let Some(bias) = get_attribute_literal(&field.attrs, "bias") {
			field_values.extend(quote! { + #bias });
		}
		
		field_values.extend(quote! { , });
	}
	
	// surround the field values with either () or {} brackets
	match fields {
		syn::Fields::Named(_) => {
			Some(proc_macro2::Group::new(
				proc_macro2::Delimiter::Brace,
				field_values
			))
		},
		syn::Fields::Unnamed(_) => {
			Some(proc_macro2::Group::new(
				proc_macro2::Delimiter::Parenthesis,
				field_values
			))
		},
		syn::Fields::Unit => None,
	}
}

// very very precise summation algorithm
// see https://en.wikipedia.org/wiki/Kahan_summation_algorithm
fn kahan_sum(it: impl IntoIterator<Item = f64>) -> f64 {
	let mut it = it.into_iter();
	let mut sum = 0.0;
	let mut c = 0.0;
	while let Some(x) = it.next() {
		let y = x - c;
		let t = sum + y;
		c = (t - sum) - y;
		sum = t;
	}
	sum
}

fn impl_gen_random(ast: &syn::DeriveInput) -> TokenStream {
	let name = &ast.ident;
	let mut function_body;
	
	match &ast.data {
		syn::Data::Enum(enumeration) => {
			let variants = &enumeration.variants;
			
			let prob_sum = kahan_sum(variants.iter().map(|variant| {
				 match parse_attribute_value(&variant.attrs, "prob") {
				 	Some(prob) => if prob >= 0.0 {
				 		prob
				 	} else {
				 		panic!("Variant {} has negative probability", variant.ident)
				 	},
				 	None => panic!("Variant {} has no probability", variant.ident)
				 }
			}));
			
			if prob_sum <= f64::EPSILON {
				panic!("Sum of probabilties is (basically) zero.");
			}
			
			// ideally we would just do
			//     let mut variant: f64 = rng.gen_range(0.0..1.0);
			//     variant -= variant1_probability;
			//     if variant < 0.0 { bla bla bla }
			//     variant -= variant2_probability;
			//     if variant < 0.0 { bla bla bla }
			//     etc.
			// but because of floating point imprecision, it's possible
			// that all if conditions are false.
			// however we know that for each subtraction at most one ULP is lost.
			// so we'll be fine as long as we put the end of the range at
			//     prob_sum * (1.0 - (variant_count + 2) * ULP)
			// the + 2 is for the imprecision lost in kahan_sum and one more just to be sure.
			
			let variant_max = prob_sum * (1.0 - f64::EPSILON * (variants.len() + 2) as f64);
			function_body = quote! {
				let mut variant: f64 = rng.gen_range(0.0..=#variant_max);
			};
			
			// this test value ensures that the gen_random function never panicks.
			let mut test_variant = variant_max;
			
			// parse enum fields
			for variant in variants.iter() {
				// Note: None case was checked above when computing prob_sum
				let probability: f64 = parse_attribute_value(&variant.attrs, "prob").unwrap();
				
				let name = &variant.ident;
				let field_values = generate_fields(&variant.fields);
				
				function_body.extend(quote! {
					variant -= #probability;
					if variant < 0.0 { return Self::#name #field_values; }
				});
				test_variant -= probability;
				
				
			}
			
			if test_variant >= 0.0 {
				panic!("i did floating-point math wrong. this should never happen. (test_variant = {test_variant})");
			}
			
			function_body.extend(quote! {
				panic!("RNG returned value outside of range.")
			});
			
		},
		syn::Data::Struct(structure) => {
			let field_values = generate_fields(&structure.fields);
			function_body = quote! {
				Self #field_values
			};
		},
		syn::Data::Union(_) => panic!("derive(GenRandom) cannot be applied to unions."),
	};
	
	let gen = quote! {
		impl GenRandom for #name {
			fn gen_random(rng: &mut impl rand::Rng) -> Self {
				#function_body
			}
		}
	};
	
	//println!("{gen}");
	gen.into()
}