/*
Copyright (C) 2019, 2020 Leo Tenenbaum.
This file is part of toc. toc is distributed under version 3 of the GNU General Public License, without any warranty whatsoever.
You should have received a copy of the GNU General Public License along with toc. If not, see .
*/
static bool parse_expr(Parser *p, Expression *e, Token *end);
static bool parse_stmt(Parser *p, Statement *s, bool *was_a_statement);
enum {
PARSE_DECL_ALLOW_CONST_WITH_NO_EXPR = 0x01,
PARSE_DECL_ALLOW_SEMI_CONST = 0x02,
PARSE_DECL_ALLOW_INFER = 0x04,
PARSE_DECL_ALLOW_EXPORT = 0x08
};
static bool parse_decl(Parser *p, Declaration *d, DeclEndKind ends_with, uint16_t flags);
static bool parse_decl_list(Parser *p, Declaration **decls, DeclEndKind decl_end);
static bool is_decl(Tokenizer *t);
static inline bool ends_decl(Token *t, DeclEndKind ends_with);
static bool fn_has_any_const_params(FnExpr *f) {
arr_foreach(f->params, Declaration, param)
if (param->flags & (DECL_IS_CONST | DECL_SEMI_CONST))
return true;
return false;
}
static const char *expr_kind_to_str(ExprKind k) {
switch (k) {
case EXPR_LITERAL_FLOAT: return "float literal";
case EXPR_LITERAL_INT: return "integer literal";
case EXPR_LITERAL_STR: return "string literal";
case EXPR_LITERAL_BOOL: return "boolean literal";
case EXPR_LITERAL_CHAR: return "character literal";
case EXPR_IF: return "if expression";
case EXPR_WHILE: return "while expression";
case EXPR_FOR: return "for expression";
case EXPR_CALL: return "function call";
case EXPR_C: return "C code";
case EXPR_BUILTIN: return "#builtin value";
case EXPR_NEW: return "new expression";
case EXPR_CAST: return "cast expression";
case EXPR_UNARY_OP: return "unary operator";
case EXPR_BINARY_OP: return "binary operator";
case EXPR_FN: return "function expression";
case EXPR_TUPLE: return "tuple";
case EXPR_BLOCK: return "block";
case EXPR_IDENT: return "identifier";
case EXPR_SLICE: return "slice";
case EXPR_TYPE: return "type";
case EXPR_VAL: return "value";
case EXPR_NMS: return "namespace";
}
assert(0);
return "";
}
static const char *unary_op_to_str(UnaryOp u) {
switch (u) {
case UNARY_MINUS: return "-";
case UNARY_ADDRESS: return "&";
case UNARY_DEREF: return "*";
case UNARY_NOT: return "!";
case UNARY_DEL: return "del";
case UNARY_LEN: return "len";
case UNARY_DSIZEOF: return "#sizeof";
case UNARY_DALIGNOF: return "#alignof";
}
assert(0);
return "";
}
static const char *binary_op_to_str(BinaryOp b) {
switch (b) {
case BINARY_ADD: return "+";
case BINARY_SUB: return "-";
case BINARY_MUL: return "*";
case BINARY_DIV: return "/";
case BINARY_SET: return "=";
case BINARY_SET_ADD: return "+=";
case BINARY_SET_SUB: return "-=";
case BINARY_SET_MUL: return "*=";
case BINARY_SET_DIV: return "/=";
case BINARY_SET_MOD: return "%=";
case BINARY_AT_INDEX: return "[]";
case BINARY_LT: return "<";
case BINARY_LE: return "<=";
case BINARY_GT: return ">";
case BINARY_GE: return ">=";
case BINARY_EQ: return "==";
case BINARY_NE: return "!=";
case BINARY_DOT: return ".";
case BINARY_MOD: return "%";
}
assert(0);
return "";
}
static bool type_builtin_is_signed(BuiltinType b) {
switch (b) {
case BUILTIN_I8:
case BUILTIN_I16:
case BUILTIN_I32:
case BUILTIN_I64:
case BUILTIN_F32:
case BUILTIN_F64:
return true;
default: return false;
}
}
static bool type_builtin_is_int(BuiltinType b) {
switch (b) {
case BUILTIN_I8:
case BUILTIN_I16:
case BUILTIN_I32:
case BUILTIN_I64:
case BUILTIN_U8:
case BUILTIN_U16:
case BUILTIN_U32:
case BUILTIN_U64:
return true;
default: return false;
}
}
static bool type_builtin_is_float(BuiltinType b) {
switch (b) {
case BUILTIN_F32:
case BUILTIN_F64:
return true;
default: return false;
}
}
static bool type_builtin_is_numerical(BuiltinType b) {
return type_builtin_is_int(b) || type_builtin_is_float(b);
}
/* returns -1 on failure */
static int kw_to_builtin_type(Keyword kw) {
switch (kw) {
case KW_I8: return BUILTIN_I8;
case KW_I16: return BUILTIN_I16;
case KW_I32: return BUILTIN_I32;
case KW_I64: return BUILTIN_I64;
case KW_INT: return BUILTIN_I64;
case KW_U8: return BUILTIN_U8;
case KW_U16: return BUILTIN_U16;
case KW_U32: return BUILTIN_U32;
case KW_U64: return BUILTIN_U64;
case KW_FLOAT: return BUILTIN_F32;
case KW_F32: return BUILTIN_F32;
case KW_F64: return BUILTIN_F64;
case KW_BOOL: return BUILTIN_BOOL;
case KW_CHAR: return BUILTIN_CHAR;
case KW_TYPE: return BUILTIN_TYPE;
case KW_NAMESPACE: return BUILTIN_NMS;
default: return -1;
}
return -1;
}
static Keyword builtin_type_to_kw(BuiltinType t) {
switch (t) {
case BUILTIN_I8: return KW_I8;
case BUILTIN_I16: return KW_I16;
case BUILTIN_I32: return KW_I32;
case BUILTIN_I64: return KW_I64;
case BUILTIN_U8: return KW_U8;
case BUILTIN_U16: return KW_U16;
case BUILTIN_U32: return KW_U32;
case BUILTIN_U64: return KW_U64;
case BUILTIN_F32: return KW_F32;
case BUILTIN_F64: return KW_F64;
case BUILTIN_BOOL: return KW_BOOL;
case BUILTIN_CHAR: return KW_CHAR;
case BUILTIN_TYPE: return KW_TYPE;
case BUILTIN_NMS: return KW_NAMESPACE;
}
assert(0);
return KW_COUNT;
}
/* returns the number of characters written, not including the null character */
static size_t type_to_str_(Type *t, char *buffer, size_t bufsize) {
switch (t->kind) {
case TYPE_VOID:
return str_copy(buffer, bufsize, "void");
case TYPE_UNKNOWN:
return str_copy(buffer, bufsize, "???");
case TYPE_BUILTIN: {
const char *s = keywords[builtin_type_to_kw(t->builtin)];
return str_copy(buffer, bufsize, s);
}
case TYPE_FN: {
size_t written = str_copy(buffer, bufsize, "fn (");
Type *ret_type = t->fn.types;
Type *param_types = ret_type + 1;
size_t nparams = arr_len(t->fn.types) - 1;
for (size_t i = 0; i < nparams; ++i) {
if (i > 0)
written += str_copy(buffer + written, bufsize - written, ", ");
if (t->fn.constness) {
switch (t->fn.constness[i]) {
case CONSTNESS_NO: break;
case CONSTNESS_SEMI:
written += str_copy(buffer + written, bufsize - written, ":::");
break;
case CONSTNESS_YES:
written += str_copy(buffer + written, bufsize - written, "::");
break;
}
}
written += type_to_str_(¶m_types[i], buffer + written, bufsize - written);
}
written += str_copy(buffer + written, bufsize - written, ")");
if (ret_type->kind != TYPE_VOID) {
written += str_copy(buffer + written, bufsize - written, " ");
written += type_to_str_(ret_type, buffer + written, bufsize - written);
}
return written;
}
case TYPE_STRUCT: {
if (t->struc->name) {
char *namestr = ident_to_str(t->struc->name);
size_t bytes = str_copy(buffer, bufsize, namestr);
free(namestr);
return bytes;
}
return str_copy(buffer, bufsize, "anonymous struct");
}
case TYPE_ARR: {
size_t written = str_copy(buffer, bufsize, "[");
if (t->flags & TYPE_IS_RESOLVED) {
snprintf(buffer + written, bufsize - written, U64_FMT, t->arr.n);
written += strlen(buffer + written);
} else {
written += str_copy(buffer + written, bufsize - written, "N");
}
written += str_copy(buffer + written, bufsize - written, "]");
written += type_to_str_(t->arr.of, buffer + written, bufsize - written);
return written;
}
case TYPE_SLICE: {
size_t written = str_copy(buffer, bufsize, "[");
written += str_copy(buffer + written, bufsize - written, "]");
written += type_to_str_(t->slice, buffer + written, bufsize - written);
return written;
}
case TYPE_TUPLE: {
size_t written = str_copy(buffer, bufsize, "<");
arr_foreach(t->tuple, Type, child) {
if (child != t->tuple)
written += str_copy(buffer + written, bufsize - written, ", ");
written += type_to_str_(child, buffer + written, bufsize - written);
}
written += str_copy(buffer + written, bufsize - written, ">");
return written;
}
case TYPE_PTR: {
size_t written = str_copy(buffer, bufsize, "&");
written += type_to_str_(t->ptr, buffer + written, bufsize - written);
return written;
}
case TYPE_EXPR:
/* TODO: improve this... we're gonna need expr_to_str ): */
return str_copy(buffer, bufsize, "");
}
assert(0);
return 0;
}
/* return value should be freed by caller */
static char *type_to_str(Type *t) {
char *ret = err_malloc(256);
type_to_str_(t, ret, 256);
return ret;
}
static inline Location parser_mk_loc(Parser *p) {
Location loc = {0};
loc.file = p->file;
return loc;
}
static inline void *parser_arr_add_(Parser *p, void **a, size_t sz) {
return arr_adda_(a, sz, p->allocr);
}
#define parser_arr_add(p, a) parser_arr_add_(p, (void **)(a), sizeof **(a))
static inline void *parser_malloc(Parser *p, size_t bytes) {
return allocr_malloc(p->allocr, bytes);
}
static inline void *parser_calloc(Parser *p, size_t n, size_t bytes) {
return allocr_calloc(p->allocr, n, bytes);
}
/* allocate a new expression. */
static inline Expression *parser_new_expr(Parser *p) {
return parser_malloc(p, sizeof(Expression));
}
typedef enum {
EXPR_CAN_END_WITH_COMMA = 0x01, /* a comma could end the expression */
EXPR_CAN_END_WITH_LBRACE = 0x02,
EXPR_CAN_END_WITH_COLON = 0x04,
EXPR_CAN_END_WITH_DOTDOT = 0x08,
EXPR_CAN_END_WITH_EQ = 0x10,
/* note that parse_type uses -1 for this */
} ExprEndFlags;
static Token *expr_find_end(Parser *p, ExprEndFlags flags) {
Tokenizer *t = p->tokr;
int paren_level = 0;
int brace_level = 0;
int square_level = 0;
Token *token = t->token;
bool could_be_vbs = false; /* could this be a void block statement (whose semicolons can be omitted)? e.g. {x := 5;} */
while (1) {
bool all_levels_0 = paren_level == 0 && brace_level == 0 && square_level == 0;
if (token->kind == TOKEN_KW) {
switch (token->kw) {
case KW_COMMA:
if ((flags & EXPR_CAN_END_WITH_COMMA) && all_levels_0)
return token;
break;
case KW_LPAREN:
++paren_level;
break;
case KW_RPAREN:
--paren_level;
if (paren_level < 0)
return token;
break;
case KW_LSQUARE:
++square_level;
break;
case KW_RSQUARE:
--square_level;
if (square_level < 0)
return token;
break;
case KW_LBRACE:
if ((flags & EXPR_CAN_END_WITH_LBRACE) && square_level == 0 && paren_level == 0)
return token;
++brace_level;
could_be_vbs = true;
break;
case KW_RBRACE:
--brace_level;
if (paren_level == 0 && brace_level == 0 && square_level == 0
&& could_be_vbs && !token_is_kw(token + 1, KW_RPAREN)) {
/* if there's an else/elif, the expr must continue */
if (!(token_is_kw(token + 1, KW_ELSE) || token_is_kw(token + 1, KW_ELIF)))
return token + 1; /* token afer } is end */
}
if (brace_level < 0)
return token;
break;
case KW_SEMICOLON:
if (brace_level == 0)
return token;
could_be_vbs = true;
break;
case KW_DOTDOT:
if (all_levels_0 && (flags & EXPR_CAN_END_WITH_DOTDOT))
return token;
break;
case KW_EQ:
if (all_levels_0 && (flags & EXPR_CAN_END_WITH_EQ))
return token;
break;
case KW_COLON:
if ((flags & EXPR_CAN_END_WITH_COLON) && all_levels_0)
return token;
default: break;
}
if (token->kw != KW_RBRACE && token->kw != KW_SEMICOLON && token->kw != KW_LBRACE)
could_be_vbs = false;
} else {
could_be_vbs = false;
}
if (token->kind == TOKEN_EOF) {
if (brace_level > 0) {
tokr_err(t, "Opening brace { was never closed."); /* FEATURE: Find out where this is */
} else if (paren_level > 0) {
tokr_err(t, "Opening parenthesis ( was never closed.");
} else if (square_level > 0) {
tokr_err(t, "Opening square bracket [ was never closed.");
} else {
tokr_err(t, "Could not find end of expression (did you forget a semicolon?).");
/* FEATURE: improve err message */
}
t->token = token; /* don't try to continue */
return NULL;
}
++token;
}
}
/* parses, e.g. "(3, 5, foo)" */
static bool parse_args(Parser *p, Argument **args) {
Tokenizer *t = p->tokr;
Token *start = t->token;
assert(token_is_kw(start, KW_LPAREN));
*args = NULL;
++t->token; /* move past ( */
if (!token_is_kw(t->token, KW_RPAREN)) {
/* non-empty arg list */
while (1) {
if (t->token->kind == TOKEN_EOF) {
tokr_err(t, "Expected argument list to continue.");
info_print(token_location(p->file, start), "This is where the argument list starts.");
return false;
}
Argument *arg = parser_arr_add(p, args);
arg->where = parser_mk_loc(p);
arg->where.start = t->token;
/* named arguments */
if (t->token->kind == TOKEN_IDENT && token_is_kw(t->token + 1, KW_EQ)) {
arg->name = t->token->ident;
t->token += 2;
} else {
arg->name = NULL;
}
if (!parse_expr(p, &arg->val, expr_find_end(p, EXPR_CAN_END_WITH_COMMA))) {
return false;
}
arg->where.end = t->token;
if (token_is_kw(t->token, KW_RPAREN))
break;
assert(token_is_kw(t->token, KW_COMMA));
++t->token; /* move past , */
}
}
++t->token; /* move past ) */
return true;
}
static bool parse_type(Parser *p, Type *type) {
Tokenizer *t = p->tokr;
type->where = parser_mk_loc(p);
type->where.start = t->token;
type->flags = 0;
switch (t->token->kind) {
case TOKEN_KW:
type->kind = TYPE_BUILTIN;
{
int b = kw_to_builtin_type(t->token->kw);
if (b != -1) {
type->builtin = (BuiltinType)b;
++t->token;
break;
}
}
/* Not a builtin */
switch (t->token->kw) {
case KW_FN: {
/* function type */
type->kind = TYPE_FN;
type->fn.types = NULL;
type->fn.constness = NULL;
++t->token;
if (!token_is_kw(t->token, KW_LPAREN)) {
tokr_err(t, "Expected ( to follow fn.");
return false;
}
parser_arr_add(p, &type->fn.types); /* add return type */
++t->token;
if (!token_is_kw(t->token, KW_RPAREN)) {
while (1) {
Type *param_type = parser_arr_add(p, &type->fn.types);
if (!parse_type(p, param_type)) return false;
if (param_type->kind == TYPE_TUPLE) {
err_print(param_type->where, "Functions cannot have tuples as parameters.");
return false;
}
if (token_is_kw(t->token, KW_RPAREN))
break;
if (!token_is_kw(t->token, KW_COMMA)) {
tokr_err(t, "Expected , to continue function type parameter list.");
return false;
}
++t->token; /* move past , */
}
}
++t->token; /* move past ) */
Type *ret_type = type->fn.types;
/* if there's a symbol that isn't [, (, or &, that can't be the start of a type */
if ((t->token->kind == TOKEN_KW
&& t->token->kw <= KW_LAST_SYMBOL
&& t->token->kw != KW_LSQUARE
&& t->token->kw != KW_LPAREN
&& t->token->kw != KW_AMPERSAND)
|| t->token->kw == KW_AS) {
ret_type->kind = TYPE_VOID;
ret_type->flags = 0;
} else {
if (!parse_type(p, ret_type))
return false;
}
break;
}
case KW_LSQUARE: {
/* array/slice */
type->kind = TYPE_ARR;
++t->token; /* move past [ */
if (token_is_kw(t->token, KW_RSQUARE)) {
/* slice */
type->kind = TYPE_SLICE;
type->slice = parser_malloc(p, sizeof *type->slice);
++t->token; /* move past ] */
if (!parse_type(p, type->slice)) return false;
if (type->slice->kind == TYPE_TUPLE) {
err_print(type->where, "You cannot have a slice of tuples.");
return false;
}
break;
}
Token *end = expr_find_end(p, 0);
type->arr.n_expr = parser_new_expr(p);
if (!parse_expr(p, type->arr.n_expr, end)) return false;
t->token = end + 1; /* go past ] */
type->arr.of = parser_malloc(p, sizeof *type->arr.of);
if (!parse_type(p, type->arr.of)) return false;
if (type->arr.of->kind == TYPE_TUPLE) {
err_print(type->where, "You cannot have an array of tuples.");
return false;
}
} break;
case KW_LT:
/* tuple! */
type->kind = TYPE_TUPLE;
type->tuple = NULL;
++t->token; /* move past < */
while (1) {
Type *child = parser_arr_add(p, &type->tuple);
if (!parse_type(p, child)) return false;
if (child->kind == TYPE_TUPLE) {
err_print(child->where, "Tuples cannot contain tuples.");
return false;
}
if (token_is_kw(t->token, KW_GT)) { /* we're done with the tuple */
++t->token; /* move past > */
break;
}
if (token_is_kw(t->token, KW_COMMA)) {
++t->token; /* move past , */
continue;
} else {
tokr_err(t, "Expected , to list next tuple type or ) to end tuple type.");
return false;
}
}
break;
case KW_AMPERSAND:
/* pointer */
type->kind = TYPE_PTR;
type->ptr = parser_malloc(p, sizeof *type->ptr);
++t->token; /* move past & */
if (!parse_type(p, type->ptr)) return false;
if (type->ptr->kind == TYPE_TUPLE) {
err_print(type->ptr->where, "You cannot have a pointer to a tuple.");
return false;
}
break;
case KW_STRUCT: {
/* struct */
type->kind = TYPE_STRUCT;
StructDef *struc = type->struc = parser_malloc(p, sizeof *type->struc);
struc->flags = 0;
struc->name = NULL;
/* help cgen out */
struc->c.id = 0;
struc->fields = NULL;
struc->where = parser_mk_loc(p);
struc->where.start = t->token;
++t->token;
if (!token_is_kw(t->token, KW_LBRACE)) {
tokr_err(t, "Expected { or ( to follow struct.");
return false;
}
++t->token;
{
while (!token_is_kw(t->token, KW_RBRACE)) {
Declaration field_decl;
if (!parse_decl(p, &field_decl, DECL_END_SEMICOLON, 0)) {
return false;
}
if (field_decl.flags & DECL_IS_CONST) {
/* TODO */
err_print(field_decl.where, "Constant struct members are not supported (yet).");
return false;
}
if ((field_decl.flags & DECL_FOREIGN) && !(field_decl.flags & DECL_IS_CONST)) {
err_print(field_decl.where, "Non-constant struct members cannot be foreign.");
return false;
}
if (field_decl.flags & DECL_HAS_EXPR) {
err_print(field_decl.where, "struct members cannot have initializers.");
return false;
}
long idx = 0;
arr_foreach(field_decl.idents, Identifier, fident) {
Type *ftype = field_decl.type.kind == TYPE_TUPLE ? &field_decl.type.tuple[idx] : &field_decl.type;
Field *f = parser_arr_add(p, &type->struc->fields);
f->name = *fident;
f->type = *ftype;
++idx;
}
}
++t->token;
struc->where.end = t->token;
}
} break;
default:
goto type_expr;
}
break;
default:
type_expr: {
/* TYPE_EXPR */
Token *end = expr_find_end(p, (ExprEndFlags)-1 /* end as soon as possible */);
if (parse_expr(p, type->expr = parser_new_expr(p), end)) {
type->kind = TYPE_EXPR;
} else {
return false;
}
} break;
}
type->where.end = t->token;
return true;
}
/*
is the thing we're looking at definitely a type, as opposed to an expression?
if end is not NULL, it is set to the token one past the last one in the type,
assuming it's successful
*/
static bool parser_is_definitely_type(Parser *p, Token **end) {
Tokenizer *t = p->tokr;
Token *start = t->token;
bool ret = false;
do {
continu:
switch (t->token->kind) {
case TOKEN_KW:
switch (t->token->kw) {
case KW_STRUCT:
ret = true;
if (end) {
int level = 1;
t->token += 2; /* skip struct { */
while (t->token->kind != TOKEN_EOF) {
if (t->token->kind == TOKEN_KW) switch (t->token->kw) {
case KW_LBRACE:
++level;
break;
case KW_RBRACE:
--level;
if (level == 0) goto end;
break;
default: break;
}
++t->token;
}
}
break;
case KW_LSQUARE:
ret = true;
if (end) {
int level = 1;
++t->token;
while (t->token->kind != TOKEN_EOF) {
if (t->token->kind == TOKEN_KW) switch (t->token->kw) {
case KW_LSQUARE:
++level;
break;
case KW_RSQUARE:
--level;
if (level == 0) {
if (end) {
++t->token;
parser_is_definitely_type(p, &t->token); /* move to end of type */
}
goto end;
}
break;
default: break;
}
++t->token;
}
}
break;
case KW_LT: {
/* no expression can start with < */
return true;
} break;
case KW_FN: {
ret = false;
++t->token;
if (!token_is_kw(t->token, KW_LPAREN)) {
break;
}
++t->token;
int paren_level = 1;
while (t->token->kind != TOKEN_EOF) {
if (t->token->kind == TOKEN_KW) switch (t->token->kw) {
case KW_LPAREN:
++paren_level;
break;
case KW_RPAREN:
--paren_level;
if (paren_level == 0) {
++t->token;
if (token_is_kw(t->token, KW_LBRACE)) goto end; /* void fn expr */
if (is_decl(t)) /* has return declaration */
goto end;
if (t->token->kind == TOKEN_KW &&
(t->token->kw == KW_SEMICOLON || t->token->kw == KW_COMMA || t->token->kw == KW_RPAREN || t->token->kw == KW_LBRACE)) {
/* void fn type */
ret = true;
goto end;
}
Type return_type;
if (!parse_type(p, &return_type)) {
/* couldn't parse a return type. this shouldn't happen in theory. */
assert(0);
}
if (token_is_kw(t->token, KW_LBRACE)) {
/* non-void fn expr */
goto end;
}
/* it's a non-void function type */
ret = true;
goto end;
}
break;
default: break;
}
++t->token;
}
} break;
case KW_AMPERSAND:
++t->token; /* continue; see if next thing is definitely a type */
goto continu;
default: {
int x = kw_to_builtin_type(t->token->kw);
if ((ret = x != -1)) {
++t->token;
}
break;
}
} break;
case TOKEN_DIRECT:
case TOKEN_LITERAL_NUM:
case TOKEN_LITERAL_CHAR:
case TOKEN_LITERAL_STR:
case TOKEN_EOF:
case TOKEN_IDENT:
ret = false;
break;
}
} while (0);
end:
if (ret && end) *end = t->token;
t->token = start;
return ret;
}
enum {
PARSE_BLOCK_DONT_CREATE_IDENTS = 0x01
};
static bool parse_block(Parser *p, Block *b, U8 flags) {
Tokenizer *t = p->tokr;
Block *prev_block = p->block;
b->flags = 0;
b->ret_expr = NULL;
p->block = b;
if (!(flags & PARSE_BLOCK_DONT_CREATE_IDENTS))
idents_create(&b->idents, p->allocr, p->block);
if (!token_is_kw(t->token, KW_LBRACE)) {
tokr_err(t, "Expected '{' to open block.");
return false;
}
b->where = parser_mk_loc(p);
b->where.start = t->token;
#ifdef TOC_DEBUG
b->where.end = t->token + 1;
#endif
++t->token; /* move past { */
b->stmts = NULL;
bool ret = true;
if (!token_is_kw(t->token, KW_RBRACE)) {
/* non-empty block */
while (1) {
Statement *stmt = parser_arr_add(p, &b->stmts);
bool was_a_statement;
bool success = parse_stmt(p, stmt, &was_a_statement);
if (!success) {
ret = false;
}
if (!was_a_statement) {
arr_remove_lasta(&b->stmts, p->allocr);
}
if (token_is_kw(t->token, KW_RBRACE)) {
break;
}
if (t->token->kind == TOKEN_EOF) {
tokr_err(t, "Expected '}' to close function body.");
ret = false;
goto end;
}
}
}
b->where.end = t->token;
++t->token; /* move past } */
end:
p->block = prev_block;
return ret;
}
/* does NOT handle empty declaration lists */
static bool parse_decl_list(Parser *p, Declaration **decls, DeclEndKind decl_end) {
Tokenizer *t = p->tokr;
bool ret = true;
bool first = true;
*decls = NULL;
while (t->token->kind != TOKEN_EOF &&
(first || (
!token_is_kw(t->token - 1, KW_RPAREN) &&
!token_is_kw(t->token - 1, KW_LBRACE)))) {
first = false;
Declaration *decl = parser_arr_add(p, decls);
if (!parse_decl(p, decl, decl_end, PARSE_DECL_ALLOW_CONST_WITH_NO_EXPR | PARSE_DECL_ALLOW_SEMI_CONST | PARSE_DECL_ALLOW_INFER)) {
ret = false;
/* skip to end of list */
while (t->token->kind != TOKEN_EOF && !ends_decl(t->token, decl_end))
++t->token;
break;
}
}
return ret;
}
static bool parse_fn_expr(Parser *p, FnExpr *f) {
Tokenizer *t = p->tokr;
f->ret_decls = NULL;
{
/* help types.c */
HashTable z = {0};
f->instances = z;
}
/* only called when token is fn */
assert(token_is_kw(t->token, KW_FN));
++t->token;
if (!token_is_kw(t->token, KW_LPAREN)) {
tokr_err(t, "Expected '(' after 'fn'.");
return false;
}
++t->token;
f->params = NULL;
bool success = true;
Block *prev_block = p->block;
/* enter block so that parameters' scope will be the function body */
p->block = &f->body;
idents_create(&f->body.idents, p->allocr, &f->body);
if (token_is_kw(t->token, KW_RPAREN)) {
++t->token;
} else {
if (!parse_decl_list(p, &f->params, DECL_END_RPAREN_COMMA))
return false;
arr_foreach(f->params, Declaration, param) {
if (param->flags & DECL_FOREIGN) {
err_print(param->where, "Parameters cannot be foreign.");
success = false;
goto ret;
}
}
}
if (t->token->kind == TOKEN_EOF) {
tokr_err(t, "End of file encountered while parsing parameter list.");
success = false; goto ret;
}
if (token_is_kw(t->token, KW_LBRACE)) {
/* void function */
f->ret_type.kind = TYPE_VOID;
f->ret_type.flags = 0;
} else if (is_decl(t)) {
if (!parse_decl_list(p, &f->ret_decls, DECL_END_LBRACE_COMMA))
return false;
arr_foreach(f->ret_decls, Declaration, d) {
if ((d->flags & DECL_IS_CONST) || (d->flags & DECL_SEMI_CONST)) {
err_print(d->where, "Named return values cannot be constant.");
success = false; goto ret;
}
if (d->flags & DECL_INFER) {
err_print(d->where, "Can't infer the value of a named return value!");
success = false; goto ret;
}
if (d->flags & DECL_FOREIGN) {
err_print(d->where, "Named return values can't be foreign.");
success = false; goto ret;
}
}
--t->token; /* move back to { */
/* just set return type to void. the actual return type will be set by types.c:type_of_fn */
f->ret_type.kind = TYPE_VOID;
f->ret_type.flags = 0;
} else {
if (!parse_type(p, &f->ret_type)) {
success = false;
goto ret;
}
}
if (!parse_block(p, &f->body, PARSE_BLOCK_DONT_CREATE_IDENTS))
success = false;
ret:
f->body.flags |= BLOCK_IS_FN;
p->block = prev_block;
return success;
}
static void fprint_expr(FILE *out, Expression *e);
#define NOT_AN_OP -1
/* cast/new aren't really operators since they operate on types, not exprs. */
#define CAST_PRECEDENCE 2
#define NEW_PRECEDENCE 22
static int op_precedence(Keyword op) {
switch (op) {
case KW_EQ:
case KW_PLUS_EQ:
case KW_MINUS_EQ:
case KW_ASTERISK_EQ:
case KW_SLASH_EQ:
case KW_PERCENT_EQ:
return 0;
case KW_COMMA: return 1;
case KW_LT: return 3;
case KW_GT: return 3;
case KW_LE: return 3;
case KW_GE: return 3;
case KW_EQ_EQ: return 3;
case KW_NE: return 3;
case KW_PLUS: return 10;
case KW_MINUS: return 20;
case KW_AMPERSAND: return 25;
case KW_ASTERISK: return 30;
case KW_SLASH: return 40;
case KW_PERCENT: return 45;
case KW_EXCLAMATION: return 50;
case KW_DEL: return 1000;
default: return NOT_AN_OP;
}
}
static Identifier parser_ident_insert(Parser *p, char *str) {
Identifiers *idents = p->block ? &p->block->idents : p->globals;
Identifier i = ident_insert(idents, &str);
assert(i->idents->scope == p->block);
return i;
}
static bool parse_expr(Parser *p, Expression *e, Token *end) {
Tokenizer *t = p->tokr;
#if 0
{
Location where;
where.file = p->file;
where.start = t->token;
where.end = end;
printf("PARSING ");
fprint_location(stdout, where);
}
#endif
e->flags = 0;
e->type.flags = 0;
if (end == NULL) return false;
e->where = parser_mk_loc(p);
e->where.start = t->token;
if (end <= t->token) {
tokr_err(t, "Empty expression.");
return false;
}
{
Token *before = t->token;
if (parser_is_definitely_type(p, NULL)) {
/* it's a type! */
e->kind = EXPR_TYPE;
if (!parse_type(p, &e->typeval))
return false;
if (t->token == end) goto success;
/* there's more stuff after */
}
t->token = before;
if (end - t->token == 1) {
/* 1-token expression */
switch (t->token->kind) {
case TOKEN_LITERAL_NUM: {
NumLiteral *num = &t->token->num;
switch (num->kind) {
case NUM_LITERAL_FLOAT:
e->kind = EXPR_LITERAL_FLOAT;
e->floatl = num->floatval;
break;
case NUM_LITERAL_INT:
e->kind = EXPR_LITERAL_INT;
e->intl = num->intval;
break;
}
} break;
case TOKEN_IDENT:
e->kind = EXPR_IDENT;
e->ident = parser_ident_insert(p, t->token->ident);
break;
case TOKEN_LITERAL_STR:
e->kind = EXPR_LITERAL_STR;
e->strl = t->token->str;
break;
case TOKEN_LITERAL_CHAR:
e->kind = EXPR_LITERAL_CHAR;
e->charl = t->token->chr;
break;
case TOKEN_KW:
switch (t->token->kw) {
case KW_TRUE:
e->kind = EXPR_LITERAL_BOOL;
e->booll = true;
break;
case KW_FALSE:
e->kind = EXPR_LITERAL_BOOL;
e->booll = false;
break;
default: goto unrecognized;
}
break;
default:
unrecognized:
tokr_err(t, "Unrecognized expression.");
t->token = end + 1;
return false;
}
t->token = end;
goto success;
}
Token *start = t->token;
/* TODO: consider moving this after ops, so that "if true { 5 } else { 3 } as f32" is possible */
if (t->token->kind == TOKEN_KW) switch (t->token->kw) {
case KW_FN: {
/* this is a function */
e->kind = EXPR_FN;
if (!parse_fn_expr(p, e->fn = parser_calloc(p, 1, sizeof *e->fn)))
return false;
if (t->token != end) {
if (token_is_kw(t->token, KW_LPAREN))
tokr_err(t, "Direct function calling in an expression is not supported.\nYou can wrap the function in parentheses.");
else
tokr_err(t, "Expected end of function (did you forget a semicolon?).");
return false;
}
goto success;
}
case KW_NMS: {
Namespace *n = &e->nms;
e->kind = EXPR_NMS;
++t->token;
if (!parse_block(p, &n->body, 0))
return false;
goto success;
}
case KW_IF: {
IfExpr *i = &e->if_;
e->kind = EXPR_IF;
++t->token;
Token *cond_end = expr_find_end(p, EXPR_CAN_END_WITH_LBRACE);
if (!cond_end) return false;
if (!token_is_kw(cond_end, KW_LBRACE)) {
t->token = cond_end;
tokr_err(t, "Expected { to open if body.");
return false;
}
i->cond = parser_new_expr(p);
if (!parse_expr(p, i->cond, cond_end)) return false;
if (!parse_block(p, &i->body, 0)) return false;
IfExpr *curr = i;
while (1) {
bool is_else = token_is_kw(t->token, KW_ELSE);
bool is_elif = token_is_kw(t->token, KW_ELIF);
if (!is_else && !is_elif) {
curr->next_elif = NULL;
break;
}
if (curr->cond == NULL) {
tokr_err(t, "You can't have more elif/elses after an else.");
return false;
}
Expression *next = parser_new_expr(p);
next->flags = 0;
next->kind = EXPR_IF;
next->where = parser_mk_loc(p);
next->where.start = t->token;
curr->next_elif = next;
IfExpr *nexti = &next->if_;
if (is_else) {
++t->token;
nexti->cond = NULL;
if (!parse_block(p, &nexti->body, 0)) return false;
} else {
/* elif */
++t->token;
cond_end = expr_find_end(p, EXPR_CAN_END_WITH_LBRACE);
if (!cond_end) return false;
if (!token_is_kw(cond_end, KW_LBRACE)) {
t->token = cond_end;
tokr_err(t, "Expected { to open elif body.");
return false;
}
Expression *cond = parser_new_expr(p);
if (!parse_expr(p, cond, cond_end))
return false;
nexti->cond = cond;
if (!parse_block(p, &nexti->body, 0)) return false;
}
next->where.end = t->token;
curr = nexti;
}
goto success;
}
case KW_WHILE: {
e->kind = EXPR_WHILE;
WhileExpr *w = &e->while_;
++t->token;
if (token_is_kw(t->token, KW_LBRACE)) {
/* infinite loop */
w->cond = NULL;
} else {
Token *cond_end = expr_find_end(p, EXPR_CAN_END_WITH_LBRACE);
if (!cond_end) return false;
if (!token_is_kw(cond_end, KW_LBRACE)) {
t->token = cond_end;
tokr_err(t, "Expected { to open while body.");
return false;
}
Expression *cond = parser_new_expr(p);
w->cond = cond;
if (!parse_expr(p, cond, cond_end))
return false;
}
if (!parse_block(p, &w->body, 0)) return false;
goto success;
}
case KW_FOR: {
e->kind = EXPR_FOR;
ForExpr *fo = e->for_ = parser_malloc(p, sizeof *fo);
fo->val_stack = NULL;
fo->flags = 0;
fo->value = NULL;
fo->index = NULL;
Block *prev_block = p->block;
p->block = &fo->body;
idents_create(&p->block->idents, p->allocr, p->block);
++t->token;
if (token_is_kw(t->token, KW_COLON)
|| (t->token->kind == TOKEN_IDENT
&& (token_is_kw(t->token + 1, KW_COLON)
|| (token_is_kw(t->token + 1, KW_COMMA)
&& t->token[2].kind == TOKEN_IDENT
&& token_is_kw(t->token + 3, KW_COLON))))) {
if (t->token->kind == TOKEN_IDENT) {
fo->value = parser_ident_insert(p, t->token->ident);
fo->value->decl_kind = IDECL_FOR;
fo->value->for_ = fo;
if (ident_eq_str(fo->value, "_")) /* ignore value */
fo->value = NULL;
++t->token;
if (token_is_kw(t->token, KW_COMMA)) {
++t->token;
if (t->token->kind == TOKEN_IDENT) {
fo->index = parser_ident_insert(p, t->token->ident);
fo->index->decl_kind = IDECL_FOR;
fo->index->for_ = fo;
if (ident_eq_str(fo->index, "_")) /* ignore index */
fo->index = NULL;
++t->token;
} else {
tokr_err(t, "Expected identifier after , in for loop.");
goto for_fail;
}
}
}
if (!token_is_kw(t->token, KW_COLON)) {
tokr_err(t, "Expected : following identifiers in for loop.");
goto for_fail;
}
++t->token;
if (token_is_kw(t->token, KW_COLON)) {
tokr_err(t, "The variable(s) in a for loop cannot be constant.");
goto for_fail;
}
if (!token_is_kw(t->token, KW_EQ)) {
fo->flags |= FOR_ANNOTATED_TYPE;
if (!parse_type(p, &fo->type))
goto for_fail;
if (!token_is_kw(t->token, KW_EQ)) {
tokr_err(t, "Expected = in for statement.");
goto for_fail;
}
}
++t->token;
}
Token *first_end; first_end = expr_find_end(p, EXPR_CAN_END_WITH_COMMA|EXPR_CAN_END_WITH_DOTDOT|EXPR_CAN_END_WITH_LBRACE);
Expression *first; first = parser_new_expr(p);
if (!parse_expr(p, first, first_end))
goto for_fail;
if (token_is_kw(first_end, KW_LBRACE)) {
fo->of = first;
} else if (token_is_kw(first_end, KW_DOTDOT) || token_is_kw(first_end, KW_COMMA)) {
fo->flags |= FOR_IS_RANGE;
fo->range.from = first;
if (token_is_kw(first_end, KW_COMMA)) {
/* step */
++t->token;
fo->range.step = parser_new_expr(p);
Token *step_end = expr_find_end(p, EXPR_CAN_END_WITH_LBRACE|EXPR_CAN_END_WITH_DOTDOT);
if (!parse_expr(p, fo->range.step, step_end))
goto for_fail;
if (!token_is_kw(step_end, KW_DOTDOT)) {
err_print(token_location(p->file, step_end), "Expected .. to follow step in for statement.");
goto for_fail;
}
} else {
fo->range.step = NULL;
}
++t->token; /* move past .. */
if (token_is_kw(t->token, KW_LBRACE)) {
fo->range.to = NULL; /* infinite loop! */
} else {
fo->range.to = parser_new_expr(p);
Token *to_end = expr_find_end(p, EXPR_CAN_END_WITH_LBRACE);
if (!parse_expr(p, fo->range.to, to_end))
goto for_fail;
if (!token_is_kw(t->token, KW_LBRACE)) {
tokr_err(t, "Expected { to open body of for statement.");
goto for_fail;
}
}
} else {
err_print(token_location(p->file, first_end), "Expected { or .. to follow expression in for statement.");
goto for_fail;
}
if (!parse_block(p, &fo->body, PARSE_BLOCK_DONT_CREATE_IDENTS))
goto for_fail;
p->block = prev_block;
goto success;
for_fail:
p->block = prev_block;
return false;
}
default: break;
}
/* NOTE: the . operator is not handled here, but further down, in order to allow some_struct.fn_member() */
Token *dot = NULL; /* this keeps track of it for later */
/* Find the lowest-precedence operator not in parentheses/braces/square brackets */
int paren_level = 0;
int brace_level = 0;
int square_level = 0;
int lowest_precedence = NOT_AN_OP;
/* e.g. (5+3) */
bool entirely_within_parentheses = token_is_kw(t->token, KW_LPAREN);
Token *lowest_precedence_op = NULL;
for (Token *token = t->token; token < end; ++token) {
if (token->kind == TOKEN_KW) {
switch (token->kw) {
case KW_LPAREN:
++paren_level;
break;
case KW_RPAREN:
--paren_level;
if (paren_level == 0 && token != end - 1)
entirely_within_parentheses = false;
if (paren_level < 0) {
t->token = token;
tokr_err(t, "Excessive closing ).");
t->token = end + 1;
return false;
}
break;
case KW_LBRACE:
++brace_level;
break;
case KW_RBRACE:
--brace_level;
if (brace_level < 0) {
t->token = token;
tokr_err(t, "Excessive closing }.");
return false;
}
break;
case KW_LSQUARE:
++square_level;
break;
case KW_RSQUARE:
--square_level;
if (square_level < 0) {
tokr_err(t, "Excessive closing ].");
return false;
}
break;
case KW_DOT:
if (paren_level == 0 && brace_level == 0 && square_level == 0)
dot = token;
break;
default: { /* OPTIM: use individual cases for each op */
if (paren_level == 0 && brace_level == 0 && square_level == 0) {
int precedence;
switch (token->kw) {
case KW_AS: precedence = CAST_PRECEDENCE; break;
case KW_NEW: precedence = NEW_PRECEDENCE; break;
default: precedence = op_precedence(token->kw); break;
}
if (precedence == NOT_AN_OP) break; /* nvm it's not an operator */
if (lowest_precedence == NOT_AN_OP || precedence <= lowest_precedence) {
lowest_precedence = precedence;
lowest_precedence_op = token;
}
}
} break;
}
}
}
if (paren_level > 0) {
t->token = start;
while (!token_is_kw(t->token, KW_LPAREN))
++t->token;
tokr_err(t, "Too many opening parentheses (.");
return false;
}
if (brace_level > 0) {
t->token = start;
while (!token_is_kw(t->token, KW_LBRACE))
++t->token;
tokr_err(t, "Too many opening braces {.");
return false;
}
if (square_level > 0) {
t->token = start;
while (!token_is_kw(t->token, KW_LSQUARE))
++t->token;
tokr_err(t, "Too many opening square brackets [.");
return false;
}
if (entirely_within_parentheses) {
++t->token; /* move past opening ( */
if (token_is_kw(t->token, KW_RPAREN)) {
/* ()foo */
--t->token;
tokr_err(t, "Stray () (maybe try wrapping the stuff before this in parentheses)");
return false;
}
Token *new_end = end - 1; /* parse to ending ) */
if (!parse_expr(p, e, new_end))
return false;
++t->token; /* move past closing ) */
goto success;
}
if (lowest_precedence != NOT_AN_OP) {
/* Check if this is a unary op not a binary one (e.g. +-3 => +(-3), not (+)-(3)). */
while (lowest_precedence_op != t->token
&& lowest_precedence_op[-1].kind == TOKEN_KW
&& op_precedence(lowest_precedence_op[-1].kw) != NOT_AN_OP) {
--lowest_precedence_op;
}
if (lowest_precedence_op == t->token) {
/* Unary */
UnaryOp op;
bool is_unary = true;
switch (t->token->kw) {
case KW_PLUS:
/* unary + is ignored entirely */
++t->token;
/* re-parse this expression without + */
return parse_expr(p, e, end);
case KW_MINUS:
op = UNARY_MINUS;
break;
case KW_AMPERSAND:
op = UNARY_ADDRESS;
break;
case KW_ASTERISK:
op = UNARY_DEREF;
break;
case KW_EXCLAMATION:
op = UNARY_NOT;
break;
case KW_NEW:
e->kind = EXPR_NEW;
++t->token;
if (!token_is_kw(t->token, KW_LPAREN)) {
tokr_err(t, "Expected ( to follow new.");
return false;
}
++t->token;
if (!parse_type(p, &e->new.type)) return false;
if (token_is_kw(t->token, KW_COMMA)) {
/* new(int, 5) */
++t->token;
Token *n_end = expr_find_end(p, 0);
e->new.n = parser_new_expr(p);
if (!parse_expr(p, e->new.n, n_end))
return false;
} else e->new.n = NULL;
if (!token_is_kw(t->token, KW_RPAREN)) {
tokr_err(t, "Expected ).");
return false;
}
++t->token;
if (e->new.type.kind == TYPE_TUPLE) {
err_print(e->where, "You cannot new a tuple.");
return false;
}
if (t->token == end)
goto success;
/* otherwise, there's more stuff after the new (e.g. new(int, 5).len)*/
t->token = start;
goto not_an_op;
case KW_DEL:
if (!token_is_kw(t->token + 1, KW_LPAREN)) {
/* for the future, when del could be a function */
err_print(e->where, "Expected ( after del.");
return false;
}
op = UNARY_DEL;
break;
default:
is_unary = false;
break;
}
if (!is_unary) {
tokr_err(t, "%s is not a unary operator.", keywords[lowest_precedence_op->kw]);
return false;
}
e->unary.op = op;
e->kind = EXPR_UNARY_OP;
++t->token;
Expression *of = parser_new_expr(p);
e->unary.of = of;
if (!parse_expr(p, of, end))
return false;
goto success;
}
if (lowest_precedence_op->kw == KW_AS) {
/* cast */
Expression *casted = parser_new_expr(p);
e->kind = EXPR_CAST;
e->cast.expr = casted;
if (!parse_expr(p, casted, lowest_precedence_op))
return false;
t->token = lowest_precedence_op + 1;
if (!parse_type(p, &e->cast.type))
return false;
if (t->token != end) {
tokr_err(t, "Cast expression continues after type");
return false;
}
goto success;
}
if (lowest_precedence_op->kw == KW_COMMA) {
Expression lhs, rhs;
if (!parse_expr(p, &lhs, lowest_precedence_op)) return false;
t->token = lowest_precedence_op + 1;
if (!parse_expr(p, &rhs, end)) return false;
/* create tuple expr out of lhs, rhs */
e->kind = EXPR_TUPLE;
e->tuple = NULL;
if (lhs.kind == EXPR_TUPLE) {
e->tuple = lhs.tuple;
} else {
*(Expression *)parser_arr_add(p, &e->tuple) = lhs;
}
if (rhs.kind == EXPR_TUPLE) {
arr_foreach(rhs.tuple, Expression, r) {
*(Expression *)parser_arr_add(p, &e->tuple) = *r;
}
} else {
*(Expression *)parser_arr_add(p, &e->tuple) = rhs;
}
goto success;
}
BinaryOp op;
switch (lowest_precedence_op->kw) {
case KW_PLUS:
op = BINARY_ADD;
break;
case KW_MINUS:
op = BINARY_SUB;
break;
case KW_ASTERISK:
op = BINARY_MUL;
break;
case KW_SLASH:
op = BINARY_DIV;
break;
case KW_PERCENT:
op = BINARY_MOD;
break;
case KW_EQ_EQ:
op = BINARY_EQ;
break;
case KW_NE:
op = BINARY_NE;
break;
case KW_LT:
op = BINARY_LT;
break;
case KW_LE:
op = BINARY_LE;
break;
case KW_GT:
op = BINARY_GT;
break;
case KW_GE:
op = BINARY_GE;
break;
case KW_EQ:
op = BINARY_SET;
break;
case KW_PLUS_EQ:
op = BINARY_SET_ADD;
break;
case KW_MINUS_EQ:
op = BINARY_SET_SUB;
break;
case KW_ASTERISK_EQ:
op = BINARY_SET_MUL;
break;
case KW_SLASH_EQ:
op = BINARY_SET_DIV;
break;
case KW_PERCENT_EQ:
op = BINARY_SET_MOD;
break;
case KW_AMPERSAND:
case KW_EXCLAMATION:
case KW_DEL:
err_print(token_location(p->file, lowest_precedence_op), "Unary operator '%s' being used as a binary operator!", kw_to_str(lowest_precedence_op->kw));
return false;
default: assert(0); return false;
}
e->binary.op = op;
e->kind = EXPR_BINARY_OP;
Expression *lhs = parser_new_expr(p);
e->binary.lhs = lhs;
if (!parse_expr(p, lhs, lowest_precedence_op)) {
return false;
}
Expression *rhs = parser_new_expr(p);
t->token = lowest_precedence_op + 1;
e->binary.rhs = rhs;
if (!parse_expr(p, rhs, end)) {
return false;
}
goto success;
} else {
not_an_op:;
/* function calls, array accesses, etc. */
/* try a function call or array access */
Token *token = t->token;
/* currently unnecessary: paren_level = square_level = 0; */
/*
can't call at start, e.g. in (fn() {})(), it is not the empty function ""
being called with fn() {} as an argument
*/
if (token_is_kw(t->token, KW_LPAREN)) {
++paren_level;
++token;
}
/* which opening bracket starts the call/array access */
Token *opening_bracket = NULL;
Token *closing_bracket = NULL;
for (; token < end; ++token) {
if (token->kind == TOKEN_KW) {
switch (token->kw) {
case KW_LPAREN:
if (square_level == 0 && paren_level == 0 && brace_level == 0
&& token != t->tokens
&& token[-1].kind != TOKEN_DIRECT /* don't include directives */
&& !token_is_kw(&token[-1], KW_DOT)) /* or some_struct.("property") */
opening_bracket = token; /* maybe this left parenthesis opens the function call */
++paren_level;
break;
case KW_LSQUARE:
if (square_level == 0 && paren_level == 0 && brace_level == 0)
opening_bracket = token; /* (array access) */
++square_level;
break;
case KW_RPAREN:
--paren_level;
if (opening_bracket && token_is_kw(opening_bracket, KW_LPAREN) && square_level == 0 && paren_level == 0 && brace_level == 0)
closing_bracket = token;
break;
case KW_RSQUARE:
--square_level;
if (opening_bracket && token_is_kw(opening_bracket, KW_LSQUARE) && square_level == 0 && paren_level == 0 && brace_level == 0)
closing_bracket = token;
break;
case KW_LBRACE:
++brace_level;
break;
case KW_RBRACE:
--brace_level;
break;
default: break;
}
} else if (token->kind == TOKEN_EOF) {
if (paren_level > 0) {
tokr_err(t, "Unmatched ( parenthesis.");
return false;
}
if (square_level > 0) {
tokr_err(t, "Unmatched [ square bracket.");
return false;
}
break;
}
}
if (opening_bracket && closing_bracket && closing_bracket + 1 == end /* make sure there's nothing after the closing bracket */) {
switch (opening_bracket->kw) {
case KW_LPAREN: {
/* it's a function call! */
e->kind = EXPR_CALL;
e->call.fn = parser_new_expr(p);
if (!parse_expr(p, e->call.fn, opening_bracket)) { /* parse up to ( as function */
return false;
}
t->token = opening_bracket;
if (!parse_args(p, &e->call.args))
return false;
goto success;
}
case KW_LSQUARE: {
Expression *arr = parser_new_expr(p);
/* it's an array access or slice */
/* parse array */
if (!parse_expr(p, arr, opening_bracket)) return false;
t->token = opening_bracket + 1;
Token *iend = NULL;
if (token_is_kw(t->token, KW_COLON)) {
/* slice */
goto expr_is_slice;
}
iend = expr_find_end(p, EXPR_CAN_END_WITH_COLON);
if (iend->kind != TOKEN_KW) {
err_print(token_location(p->file, iend), "Expected ] or : after index.");
return false;
}
switch (iend->kw) {
case KW_RSQUARE:
/* array access */
e->kind = EXPR_BINARY_OP;
e->binary.op = BINARY_AT_INDEX;
e->binary.lhs = arr;
e->binary.rhs = parser_new_expr(p);
if (!parse_expr(p, e->binary.rhs, iend))
return false;
break;
expr_is_slice:
case KW_COLON: {
/* slice */
SliceExpr *s = &e->slice;
e->kind = EXPR_SLICE;
s->of = arr;
if (iend) {
s->from = parser_new_expr(p);
if (!parse_expr(p, s->from, iend))
return false;
} else {
/* e.g. x[:5] */
s->from = NULL;
}
assert(token_is_kw(t->token, KW_COLON));
++t->token;
if (token_is_kw(t->token, KW_RSQUARE)) {
/* e.g. x[5:] */
s->to = NULL;
} else {
s->to = parser_new_expr(p);
Token *to_end = expr_find_end(p, 0);
if (!token_is_kw(to_end, KW_RSQUARE)) {
err_print(token_location(p->file, iend), "Expected ] at end of slice.");
return false;
}
if (!parse_expr(p, s->to, to_end))
return false;
}
} break;
default:
err_print(token_location(p->file, iend), "Expected ] or : after index.");
return false;
}
++t->token; /* move past ] */
goto success;
}
default:
assert(0);
return false;
}
}
if (t->token->kind == TOKEN_DIRECT) {
/* it's a directive */
Expression *single_arg = NULL; /* points to an expr if this is a directive with one expression argument */
switch (t->token->direct) {
case DIRECT_C:
e->kind = EXPR_C;
single_arg = e->c.code = parser_new_expr(p);
break;
case DIRECT_BUILTIN:
e->kind = EXPR_BUILTIN;
single_arg = e->builtin.which.expr = parser_new_expr(p);
break;
case DIRECT_SIZEOF:
e->kind = EXPR_UNARY_OP;
e->unary.op = UNARY_DSIZEOF;
single_arg = e->unary.of = parser_new_expr(p);
break;
case DIRECT_ALIGNOF:
e->kind = EXPR_UNARY_OP;
e->unary.op = UNARY_DALIGNOF;
single_arg = e->unary.of = parser_new_expr(p);
break;
case DIRECT_FOREIGN:
case DIRECT_EXPORT:
case DIRECT_INCLUDE:
tokr_err(t, "Unrecognized expression.");
return false;
case DIRECT_COUNT: assert(0); break;
}
if (single_arg) {
++t->token;
if (!token_is_kw(t->token, KW_LPAREN)) {
tokr_err(t, "Expected ( to follow #%s.", directives[t->token->direct]);
return false;
}
++t->token;
Token *arg_end = expr_find_end(p, 0);
if (!token_is_kw(arg_end, KW_RPAREN)) {
err_print(token_location(p->file, arg_end), "Expected ) at end of #%s directive.", directives[t->token->direct]);
return false;
}
if (!parse_expr(p, single_arg, arg_end))
return false;
++t->token;
goto success;
}
}
if (token_is_kw(t->token, KW_LBRACE)) {
/* it's a block */
e->kind = EXPR_BLOCK;
if (!parse_block(p, &e->block, 0)) return false;
if (t->token != end) {
tokr_err(t, "Expression continues after end of block."); /* TODO: improve this err message */
return false;
}
goto success;
}
if (dot) {
e->kind = EXPR_BINARY_OP;
e->binary.lhs = parser_new_expr(p);
e->binary.rhs = parser_new_expr(p);
e->binary.op = BINARY_DOT;
if (!parse_expr(p, e->binary.lhs, dot))
return false;
t->token = dot + 1;
if (!parse_expr(p, e->binary.rhs, end))
return false;
goto success;
}
tokr_err(t, "Unrecognized expression.");
return false;
}
}
success:
e->where.end = t->token;
assert(t->token == end);
if (e->kind == EXPR_FN) {
e->fn->where = e->where;
}
return true;
}
static inline bool ends_decl(Token *t, DeclEndKind ends_with) {
if (t->kind != TOKEN_KW) return false;
switch (ends_with) {
case DECL_END_SEMICOLON:
return t->kw == KW_SEMICOLON;
case DECL_END_RPAREN_COMMA:
return t->kw == KW_RPAREN || t->kw == KW_COMMA;
case DECL_END_LBRACE_COMMA:
return t->kw == KW_LBRACE || t->kw == KW_COMMA;
default: assert(0); return false;
}
}
static bool parse_decl(Parser *p, Declaration *d, DeclEndKind ends_with, U16 flags) {
Tokenizer *t = p->tokr;
d->where = parser_mk_loc(p);
d->where.start = t->token;
d->idents = NULL;
d->flags = 0;
d->val_stack = NULL;
if ((flags & PARSE_DECL_ALLOW_EXPORT) && token_is_direct(t->token, DIRECT_EXPORT)) {
d->flags |= DECL_EXPORT;
++t->token;
}
while (1) {
Identifier *ident = parser_arr_add(p, &d->idents);
if (t->token->kind != TOKEN_IDENT) {
tokr_err(t, "Cannot declare non-identifier (%s).", token_kind_to_str(t->token->kind));
goto ret_false;
}
*ident = parser_ident_insert(p, t->token->ident);
{
Identifier i = *ident;
i->decl_kind = IDECL_DECL;
i->decl = d;
}
++t->token;
if (token_is_kw(t->token, KW_COMMA)) {
++t->token;
continue;
}
if (token_is_kw(t->token, KW_COLON)) {
++t->token;
} else {
tokr_err(t, "Expected ',' to continue listing variables or ':' / '::' to indicate type.");
goto ret_false;
}
if (token_is_kw(t->token, KW_COLON)) {
++t->token;
if (token_is_kw(t->token, KW_COLON) && (flags & PARSE_DECL_ALLOW_SEMI_CONST)) {
++t->token;
d->flags |= DECL_SEMI_CONST;
} else {
d->flags |= DECL_IS_CONST;
}
break;
}
break;
}
if (token_is_kw(t->token, KW_SEMICOLON) || token_is_kw(t->token, KW_RPAREN)) {
/* e.g. foo :; */
tokr_err(t, "Cannot infer type without expression.");
goto ret_false;
}
{
bool annotates_type = !token_is_kw(t->token, KW_EQ) && !token_is_kw(t->token, KW_COMMA);
if (annotates_type) {
d->flags |= DECL_ANNOTATES_TYPE;
Type type;
if (!parse_type(p, &type)) {
goto ret_false;
}
d->type = type;
if (type.kind == TYPE_TUPLE && arr_len(d->type.tuple) != arr_len(d->idents)) {
err_print(type.where, "Expected to have %lu things declared in declaration, but got %lu.", (unsigned long)arr_len(d->type.tuple), (unsigned long)arr_len(d->idents));
goto ret_false;
}
}
}
{
const char *end_str = NULL;
switch (ends_with) {
case DECL_END_SEMICOLON: end_str = "';'"; break;
case DECL_END_RPAREN_COMMA: end_str = "')' or ','"; break;
case DECL_END_LBRACE_COMMA: end_str = "'{' or ','"; break;
}
assert(end_str);
if (token_is_kw(t->token, KW_EQ)) {
++t->token;
if (token_is_direct(t->token, DIRECT_FOREIGN)) {
if (!(d->flags & DECL_ANNOTATES_TYPE)) {
tokr_err(t, "Foreign declaration must have a type.");
goto ret_false;
}
d->flags |= DECL_FOREIGN;
/* foreign name */
++t->token;
d->foreign.name = parser_new_expr(p);
if (!parse_expr(p, d->foreign.name, expr_find_end(p, EXPR_CAN_END_WITH_COMMA))) {
goto ret_false;
}
d->foreign.lib = NULL;
if (!ends_decl(t->token, ends_with)) {
if (!token_is_kw(t->token, KW_COMMA)) {
tokr_err(t, "Expected comma, followed by foreign library.");
goto ret_false;
}
++t->token;
/* foreign library */
d->foreign.lib = parser_new_expr(p);
if (!parse_expr(p, d->foreign.lib, expr_find_end(p, 0))) {
goto ret_false;
}
}
if (!ends_decl(t->token, ends_with)) {
tokr_err(t, "Expected declaration to stop after #foreign, but it continues.");
goto ret_false;
}
++t->token;
} else if ((flags & PARSE_DECL_ALLOW_INFER) && ends_decl(t->token, ends_with)) {
/* inferred expression */
d->flags |= DECL_INFER;
if (arr_len(d->idents) > 1) {
tokr_err(t, "Inferred declarations can only have one identifier. Please separate this declaration.");
goto ret_false;
}
if (!(d->flags & DECL_IS_CONST)) {
tokr_err(t, "Inferred parameters must be constant.");
goto ret_false;
}
++t->token;
} else {
d->flags |= DECL_HAS_EXPR;
uint16_t expr_flags = 0;
if (ends_with == DECL_END_RPAREN_COMMA)
expr_flags |= EXPR_CAN_END_WITH_COMMA;
if (ends_with == DECL_END_LBRACE_COMMA)
expr_flags |= EXPR_CAN_END_WITH_LBRACE | EXPR_CAN_END_WITH_COMMA;
Token *end = expr_find_end(p, expr_flags);
if (!end || !ends_decl(end, ends_with)) {
if (end) t->token = end;
tokr_err(t, "Expected %s at end of declaration.", end_str);
goto ret_false;
}
if (!parse_expr(p, &d->expr, end)) {
t->token = end; /* move to ; */
goto ret_false;
}
if (ends_decl(t->token, ends_with)) {
++t->token;
} else {
tokr_err(t, "Expected %s at end of declaration.", end_str);
goto ret_false;
}
}
} else if (ends_decl(t->token, ends_with)) {
++t->token;
} else {
tokr_err(t, "Expected %s or '=' at end of delaration.", end_str);
goto ret_false;
}
}
if ((d->flags & DECL_IS_CONST) && !(d->flags & (DECL_HAS_EXPR | DECL_FOREIGN)) && !(flags & PARSE_DECL_ALLOW_CONST_WITH_NO_EXPR)) {
--t->token;
/* disallowed constant without an expression, e.g. x :: int; */
tokr_err(t, "You must have an expression at the end of this constant declaration.");
goto ret_false;
}
d->where.end = t->token;
switch (ends_with) {
case DECL_END_RPAREN_COMMA:
case DECL_END_LBRACE_COMMA:
--d->where.end; /* don't include the ) / { as part of the declaration */
case DECL_END_SEMICOLON: break;
}
return true;
ret_false:
/* move past end of decl */
tokr_skip_semicolon(t);
return false;
}
static bool is_decl(Tokenizer *t) {
Token *token = t->token;
/* you can only export declarations */
if (token_is_direct(token, DIRECT_EXPORT))
return true;
while (1) {
if (token->kind != TOKEN_IDENT) return false;
++token;
if (token->kind != TOKEN_KW) return false;
if (token->kw == KW_COLON)
return true;
if (token->kw != KW_COMMA) return false;
++token;
}
}
/* sets *was_a_statement to false if s was not filled, but the token was advanced */
static bool parse_stmt(Parser *p, Statement *s, bool *was_a_statement) {
Tokenizer *t = p->tokr;
if (t->token->kind == TOKEN_EOF) {
tokr_err(t, "Expected statement.");
return false;
}
s->where = parser_mk_loc(p);
s->where.start = t->token;
s->flags = 0;
*was_a_statement = true;
if (t->token->kind == TOKEN_KW) {
switch (t->token->kw) {
case KW_SEMICOLON:
*was_a_statement = false;
++t->token;
goto success;
case KW_RETURN: {
s->kind = STMT_RET;
++t->token;
s->ret.flags = 0;
if (token_is_kw(t->token, KW_SEMICOLON)) {
/* return with no expr */
++t->token;
goto success;
}
s->ret.flags |= RET_HAS_EXPR;
Token *end = expr_find_end(p, 0);
if (!end) {
while (t->token->kind != TOKEN_EOF) ++t->token; /* move to end of file */
return false;
}
if (!token_is_kw(end, KW_SEMICOLON)) {
err_print(token_location(p->file, end), "Expected ';' at end of return statement.");
t->token = end->kind == TOKEN_EOF ? end : end + 1;
return false;
}
bool success = parse_expr(p, &s->ret.expr, end);
t->token = end + 1;
return success;
}
default: break;
}
} else if (t->token->kind == TOKEN_DIRECT) {
switch (t->token->direct) {
case DIRECT_INCLUDE: {
++t->token;
s->kind = STMT_INCLUDE;
if (!parse_expr(p, &s->inc.filename, expr_find_end(p, 0)))
return false;
if (!token_is_kw(t->token, KW_SEMICOLON)) {
tokr_err(t, "Expected ; after #include directive");
return false;
}
++t->token;
goto success;
} break;
default:
break;
}
}
if (is_decl(t)) {
s->kind = STMT_DECL;
if (!parse_decl(p, s->decl = parser_malloc(p, sizeof *s->decl), DECL_END_SEMICOLON, PARSE_DECL_ALLOW_EXPORT)) {
return false;
}
} else {
s->kind = STMT_EXPR;
Token *end = expr_find_end(p, 0);
if (!end) {
tokr_err(t, "No semicolon found at end of statement.");
tokr_skip_to_eof(t);
return false;
}
bool valid = parse_expr(p, &s->expr, end);
/* go past end of expr regardless of whether successful or not */
if (token_is_kw(end, KW_SEMICOLON)) {
t->token = end + 1; /* skip ; */
} else {
s->flags |= STMT_EXPR_NO_SEMICOLON;
t->token = end;
}
if (!valid) return false;
}
success:
s->where.end = t->token;
return true;
}
static void parser_create(Parser *p, Identifiers *globals, Tokenizer *t, Allocator *allocr) {
p->tokr = t;
p->block = NULL;
p->globals = globals;
p->allocr = allocr;
}
static bool parse_file(Parser *p, ParsedFile *f) {
Tokenizer *t = p->tokr;
f->stmts = NULL;
p->file = t->file;
p->parsed_file = f;
bool ret = true;
while (t->token->kind != TOKEN_EOF) {
bool was_a_statement;
Statement *stmt = parser_arr_add(p, &f->stmts);
if (!parse_stmt(p, stmt, &was_a_statement))
ret = false;
if (!was_a_statement)
arr_remove_lasta(&f->stmts, p->allocr);
if (token_is_kw(t->token, KW_RBRACE)) {
tokr_err(t, "} without a matching {.");
return false;
}
}
return ret;
}
#define PARSE_PRINT_LOCATION(l) /* fprintf(out, "[%lu:%lu]", (unsigned long)(l).line, (unsigned long)(l).pos); */
static void fprint_expr(FILE *out, Expression *e);
static void fprint_stmt(FILE *out, Statement *s);
static void fprint_decl(FILE *out, Declaration *d);
static void fprint_type(FILE *out, Type *t) {
PARSE_PRINT_LOCATION(t->where);
char *s = type_to_str(t);
fprintf(out, "%s", s);
free(s);
}
static void print_type(Type *t) {
fprint_type(stdout, t);
printf("\n");
}
static void fprint_block(FILE *out, Block *b) {
fprintf(out, "{\n");
arr_foreach(b->stmts, Statement, stmt) {
fprint_stmt(out, stmt);
}
fprintf(out, "}");
if (b->ret_expr) {
fprintf(out, " returns ");
fprint_expr(out, b->ret_expr);
}
}
static void print_block(Block *b) {
if (b) {
fprint_block(stdout, b);
printf("\n");
} else {
printf("(null block)\n");
}
}
static void print_block_location(Block *b) {
if (b)
print_location(b->where);
else
printf("(global scope)\n");
}
static void fprint_fn_expr(FILE *out, FnExpr *f) {
fprintf(out, "fn (");
arr_foreach(f->params, Declaration, decl) {
if (decl != f->params)
fprintf(out, ", ");
fprint_decl(out, decl);
}
fprintf(out, ") ");
fprint_type(out, &f->ret_type);
fprintf(out, " ");
fprint_block(out, &f->body);
}
static void fprint_args(FILE *out, Argument *args) {
fprintf(out, "(");
arr_foreach(args, Argument, arg) {
if (arg != args) fprintf(out, ", ");
if (arg->name) {
fprint_ident_str(out, arg->name);
fprintf(out, " = ");
}
fprint_expr(out, &arg->val);
}
fprintf(out, ")");
}
static void fprint_arg_exprs(FILE *out, Expression *args) {
fprintf(out, "(");
arr_foreach(args, Expression, arg) {
if (arg != args) fprintf(out, ", ");
fprint_expr(out, arg);
}
fprintf(out, ")");
}
static inline void fprint_nms(FILE *out, Namespace *nms) {
fprintf(out, "namespace ");
fprint_block(out, &nms->body);
}
static void fprint_val(FILE *f, Value v, Type *t);
static void fprint_expr(FILE *out, Expression *e) {
PARSE_PRINT_LOCATION(e->where);
bool found_type = (e->flags & EXPR_FOUND_TYPE) != 0;
switch (e->kind) {
case EXPR_LITERAL_INT:
fprintf(out, "%lld", (long long)e->intl);
break;
case EXPR_LITERAL_FLOAT:
fprintf(out, "%f", (double)e->floatl);
break;
case EXPR_LITERAL_STR:
fprintf(out, "\"%s\"", e->strl.str);
break;
case EXPR_LITERAL_BOOL:
fprintf(out, "%s", e->booll ? "true" : "false");
break;
case EXPR_LITERAL_CHAR:
fprint_char_literal(out, e->charl);
break;
case EXPR_IDENT:
fprint_ident_debug(out, e->ident);
break;
case EXPR_BINARY_OP: {
fprintf(out, "(");
fprint_expr(out, e->binary.lhs);
fprintf(out, ")%s(", binary_op_to_str(e->binary.op));
fprint_expr(out, e->binary.rhs);
fprintf(out, ")");
} break;
case EXPR_UNARY_OP:
fprintf(out, "%s", unary_op_to_str(e->unary.op));
fprintf(out, "(");
fprint_expr(out, e->unary.of);
fprintf(out, ")");
break;
case EXPR_FN:
fprint_fn_expr(out, e->fn);
break;
case EXPR_CAST:
fprintf(out, "cast(");
fprint_expr(out, e->cast.expr);
fprintf(out, ", ");
fprint_type(out, &e->cast.type);
fprintf(out, ")");
break;
case EXPR_NEW:
fprintf(out, "new ");
fprint_type(out, &e->new.type);
break;
case EXPR_IF:
if (e->if_.cond) {
fprintf(out, "(else)? if ");
fprint_expr(out, e->if_.cond);
} else {
fprintf(out, "else");
}
fprint_block(out, &e->if_.body);
if (e->if_.next_elif)
fprint_expr(out, e->if_.next_elif);
break;
case EXPR_WHILE:
fprintf(out, "while ");
if (e->while_.cond) fprint_expr(out, e->while_.cond);
fprint_block(out, &e->while_.body);
break;
case EXPR_FOR: {
ForExpr *fo = e->for_;
fprintf(out, "for ");
if (fo->index) {
fprint_ident_debug(out, fo->index);
} else fprintf(out, "_");
fprintf(out, ", ");
if (fo->value) {
fprint_ident_debug(out, fo->value);
} else fprintf(out, "_");
fprintf(out, " :");
if (fo->flags & FOR_ANNOTATED_TYPE)
fprint_type(out, &fo->type);
fprintf(out, "= ");
if (fo->flags & FOR_IS_RANGE) {
fprint_expr(out, fo->range.from);
if (found_type) {
if (fo->range.stepval) {
fprintf(out, ",");
fprint_val(out, *fo->range.stepval, &fo->type);
}
} else {
if (fo->range.step) {
fprintf(out, ",");
fprint_expr(out, fo->range.step);
}
}
fprintf(out, "..");
if (fo->range.to) {
fprint_expr(out, fo->range.to);
}
fprintf(out, " ");
} else {
fprint_expr(out, fo->of);
}
fprint_block(out, &fo->body);
} break;
case EXPR_CALL:
fprint_expr(out, e->call.fn);
if (found_type) {
fprint_arg_exprs(out, e->call.arg_exprs);
} else {
fprint_args(out, e->call.args);
}
break;
case EXPR_BLOCK:
fprint_block(out, &e->block);
break;
case EXPR_TUPLE:
fprintf(out, "(");
arr_foreach(e->tuple, Expression, x) {
if (x != e->tuple) fprintf(out, ", ");
fprint_expr(out, x);
}
fprintf(out, ")");
break;
case EXPR_C:
fprintf(out, "#C(");
fprint_expr(out, e->c.code);
fprintf(out, ")");
break;
case EXPR_BUILTIN:
fprintf(out, "#builtin(");
if (found_type) {
fprintf(out, "%s", builtin_val_names[e->builtin.which.val]);
} else {
fprint_expr(out, e->builtin.which.expr);
}
fprintf(out, ")");
break;
case EXPR_SLICE: {
SliceExpr *s = &e->slice;
fprint_expr(out, s->of);
fprintf(out, "[");
if (s->from) fprint_expr(out, s->from);
fprintf(out, ":");
if (s->to) fprint_expr(out, s->to);
fprintf(out, "]");
} break;
case EXPR_TYPE:
fprint_type(out, &e->typeval);
break;
case EXPR_VAL:
fprint_val(out, e->val, &e->type);
break;
case EXPR_NMS:
fprint_nms(out, &e->nms);
break;
}
if (found_type) {
fprintf(out, ":");
fprint_type(out, &e->type);
}
}
static void print_expr(Expression *e) {
fprint_expr(stdout, e);
printf("\n");
}
static void fprint_decl(FILE *out, Declaration *d) {
PARSE_PRINT_LOCATION(d->where);
arr_foreach(d->idents, Identifier, ident) {
if (ident != d->idents) fprintf(out, ", ");
fprint_ident_debug(out, *ident);
}
if (d->flags & DECL_IS_CONST) {
fprintf(out, "::");
} else if (d->flags & DECL_SEMI_CONST) {
fprintf(out, ":::");
} else {
fprintf(out, ":");
}
if ((d->flags & DECL_FOUND_TYPE) || (d->flags & DECL_ANNOTATES_TYPE)) {
fprint_type(out, &d->type);
}
if (d->flags & DECL_HAS_EXPR) {
fprintf(out, "=");
fprint_expr(out, &d->expr);
}
if (d->flags & DECL_FOUND_VAL) {
fprintf(out, "(");
fprint_val(out, d->val, &d->type);
fprintf(out, ")");
}
}
static void fprint_stmt(FILE *out, Statement *s) {
PARSE_PRINT_LOCATION(s->where);
switch (s->kind) {
case STMT_DECL:
fprint_decl(out, s->decl);
fprintf(out, ";\n");
break;
case STMT_EXPR:
fprint_expr(out, &s->expr);
fprintf(out, ";\n");
break;
case STMT_RET:
fprintf(out, "return ");
if (s->ret.flags & RET_HAS_EXPR)
fprint_expr(out, &s->ret.expr);
fprintf(out, ";\n");
break;
case STMT_INCLUDE:
if (s->flags & STMT_TYPED) {
arr_foreach(s->inc.stmts, Statement, sub)
fprint_stmt(out, sub);
} else {
fprintf(out, "#include ");
fprint_expr(out, &s->inc.filename);
fprintf(out, ";\n");
}
break;
}
}
static void fprint_parsed_file(FILE *out, ParsedFile *f) {
arr_foreach(f->stmts, Statement, stmt) {
fprint_stmt(out, stmt);
}
}
static int decl_ident_index(Declaration *d, Identifier i) {
int idx = 0;
arr_foreach(d->idents, Identifier, j) {
if (i == *j)
return idx;
++idx;
}
return -1;
}
static inline Value *decl_val_at_index(Declaration *d, int i) {
return d->type.kind == TYPE_TUPLE ? &d->val.tuple[i] : &d->val;
}
static inline Type *decl_type_at_index(Declaration *d, int i) {
Type *ret = d->type.kind == TYPE_TUPLE ? &d->type.tuple[i] : &d->type;
assert(ret->kind != TYPE_TUPLE);
return ret;
}
static bool ident_is_definitely_const(Identifier i) {
Declaration *decl = i->decl;
if (i->decl_kind != IDECL_DECL || !(decl->flags & DECL_IS_CONST))
return false;
if (i->decl->flags & DECL_FOREIGN) {
if (decl->foreign.lib && COMPILE_TIME_FOREIGN_FN_SUPPORT)
return true;
else
return false;
} else {
return true;
}
}
static bool expr_is_definitely_const(Expression *e) {
switch (e->kind) {
case EXPR_LITERAL_FLOAT:
case EXPR_LITERAL_INT:
case EXPR_LITERAL_CHAR:
case EXPR_LITERAL_STR:
case EXPR_LITERAL_BOOL:
case EXPR_TYPE:
case EXPR_VAL:
case EXPR_NMS:
return true;
case EXPR_IF:
case EXPR_WHILE:
case EXPR_C:
case EXPR_BUILTIN:
case EXPR_NEW:
case EXPR_CAST:
case EXPR_CALL:
case EXPR_BLOCK:
case EXPR_TUPLE:
case EXPR_FOR:
case EXPR_FN:
return false;
case EXPR_UNARY_OP:
return expr_is_definitely_const(e->unary.of);
case EXPR_BINARY_OP:
if (e->binary.op == BINARY_DOT) {
if (!expr_is_definitely_const(e->binary.lhs))
return false;
Type *lhs_type = &e->binary.lhs->type;
if (lhs_type->kind == TYPE_PTR) lhs_type = lhs_type->ptr;
return true;
}
return expr_is_definitely_const(e->binary.lhs)
&& expr_is_definitely_const(e->binary.rhs);
case EXPR_SLICE:
return expr_is_definitely_const(e->slice.of);
case EXPR_IDENT:
return ident_is_definitely_const(e->ident);
}
assert(0);
return false;
}