/*
Copyright (C) 2019 Leo Tenenbaum.
This file is part of toc. toc is distributed under version 3 of the GNU General Public License, without any warranty whatsoever.
You should have received a copy of the GNU General Public License along with toc. If not, see .
*/
static bool types_block(Typer *tr, Block *b);
static bool types_decl(Typer *tr, Declaration *d);
static bool type_resolve(Typer *tr, Type *t, Location where);
static size_t compiler_sizeof(Type *t);
static bool eval_block(Evaluator *ev, Block *b, Type *t, Value *v);
static bool eval_expr(Evaluator *ev, Expression *e, Value *v);
static bool block_enter(Block *b, Statement *stmts, U16 flags);
static void block_exit(Block *b, Statement *stmts);
static void evalr_create(Evaluator *ev, Typer *tr, Allocator *allocr) {
ev->returning = NULL;
ev->to_free = NULL;
ev->typer = tr;
ev->enabled = true;
ev->allocr = allocr;
}
static void evalr_free(Evaluator *ev) {
typedef void *VoidPtr;
arr_foreach(ev->to_free, VoidPtr, f) {
printf("Freeing %p\n",*f);
free(*f);
}
arr_clear(&ev->to_free);
}
static inline void *evalr_malloc(Evaluator *ev, size_t bytes) {
return allocr_malloc(ev->allocr, bytes);
}
static inline void *evalr_calloc(Evaluator *ev, size_t n, size_t bytes) {
return allocr_calloc(ev->allocr, n, bytes);
}
static size_t compiler_sizeof_builtin(BuiltinType b) {
switch (b) {
case BUILTIN_I8: return sizeof(I8);
case BUILTIN_U8: return sizeof(U8);
case BUILTIN_I16: return sizeof(I16);
case BUILTIN_U16: return sizeof(U16);
case BUILTIN_I32: return sizeof(I32);
case BUILTIN_U32: return sizeof(U32);
case BUILTIN_I64: return sizeof(I64);
case BUILTIN_U64: return sizeof(U64);
case BUILTIN_F32: return sizeof(F32);
case BUILTIN_F64: return sizeof(F64);
case BUILTIN_CHAR: return sizeof(char); /* = 1 */
case BUILTIN_BOOL: return sizeof(bool);
}
assert(0);
return 0;
}
static size_t compiler_alignof(Type *t) {
assert(t->flags & TYPE_IS_RESOLVED);
switch (t->kind) {
case TYPE_BUILTIN:
return compiler_sizeof_builtin(t->builtin);
case TYPE_VOID:
return 1;
case TYPE_FN:
return sizeof(FnExpr *);
case TYPE_PTR:
return sizeof(void *);
case TYPE_TUPLE:
return sizeof(Value *);
case TYPE_ARR:
return compiler_alignof(t->arr.of);
case TYPE_SLICE:
if (sizeof(void *) > sizeof(size_t))
return sizeof(void *);
else
return sizeof(size_t);
case TYPE_TYPE:
return sizeof(Type *);
case TYPE_STRUCT: {
/* assume the align of a struct is (at most) the greatest align out of its children's */
size_t align = 1;
arr_foreach(t->struc->fields, Field, f) {
size_t falign = compiler_alignof(f->type);
if (falign > align) align = falign;
}
return align;
}
case TYPE_UNKNOWN:
case TYPE_EXPR:
break;
}
assert(0);
return 0;
}
/* finds offsets and size */
static void eval_struct_find_offsets(Type *t) {
assert(t->kind == TYPE_STRUCT);
if (!(t->struc->flags & STRUCT_DEF_FOUND_OFFSETS)) {
size_t bytes = 0;
arr_foreach(t->struc->fields, Field, f) {
size_t falign = compiler_alignof(f->type);
/* align */
bytes += ((falign - bytes) % falign + falign) % falign; /* = -bytes mod falign */
assert(bytes % falign == 0);
f->offset = bytes;
/* add size */
bytes += compiler_sizeof(f->type);
}
/* final align */
size_t align = compiler_alignof(t);
bytes += ((align - bytes) % align + align) % align; /* = -bytes mod align */
t->struc->size = bytes;
t->struc->flags |= STRUCT_DEF_FOUND_OFFSETS;
}
}
/* size of a type at compile time */
static size_t compiler_sizeof(Type *t) {
assert(t->flags & TYPE_IS_RESOLVED);
switch (t->kind) {
case TYPE_BUILTIN:
return compiler_sizeof_builtin(t->builtin);
case TYPE_FN:
return sizeof(FnExpr *);
case TYPE_PTR:
return sizeof(void *);
case TYPE_ARR:
return t->arr.n * compiler_sizeof(t->arr.of);
case TYPE_TUPLE:
return sizeof(Value *);
case TYPE_SLICE:
return sizeof(Slice);
case TYPE_TYPE:
return sizeof(Type *);
case TYPE_STRUCT: {
eval_struct_find_offsets(t);
return t->struc->size;
} break;
case TYPE_VOID:
case TYPE_UNKNOWN:
return 0;
case TYPE_EXPR:
break;
}
assert(0);
return 0;
}
static bool builtin_truthiness(Value *v, BuiltinType b) {
switch (b) {
case BUILTIN_I8: return v->i8 != 0;
case BUILTIN_I16: return v->i16 != 0;
case BUILTIN_I32: return v->i32 != 0;
case BUILTIN_I64: return v->i64 != 0;
case BUILTIN_U8: return v->u8 != 0;
case BUILTIN_U16: return v->u16 != 0;
case BUILTIN_U32: return v->u32 != 0;
case BUILTIN_U64: return v->u64 != 0;
case BUILTIN_F32: return v->f32 != 0;
case BUILTIN_F64: return v->f64 != 0;
case BUILTIN_BOOL: return v->boolv;
case BUILTIN_CHAR: return v->charv != 0;
}
assert(0); return false;
}
static bool val_truthiness(Value *v, Type *t) {
assert(t->flags & TYPE_IS_RESOLVED);
switch (t->kind) {
case TYPE_VOID: return false;
case TYPE_UNKNOWN: assert(0); return false;
case TYPE_BUILTIN: return builtin_truthiness(v, t->builtin);
case TYPE_PTR: return v->ptr != NULL;
case TYPE_FN: return v->fn != NULL;
case TYPE_ARR: return t->arr.n > 0;
case TYPE_SLICE: return v->slice.n > 0;
case TYPE_TYPE:
case TYPE_TUPLE:
case TYPE_STRUCT:
case TYPE_EXPR:
break;
}
assert(0);
return false;
}
static I64 val_to_i64(Value *v, BuiltinType v_type) {
switch (v_type) {
case BUILTIN_I8: return (I64)v->i8;
case BUILTIN_I16: return (I64)v->i16;
case BUILTIN_I32: return (I64)v->i32;
case BUILTIN_I64: return (I64)v->i64;
case BUILTIN_U8: return (I64)v->u8;
case BUILTIN_U16: return (I64)v->u16;
case BUILTIN_U32: return (I64)v->u32;
case BUILTIN_U64: return (I64)v->u64;
default: break;
}
assert(0);
return 0;
}
static U64 val_to_u64(Value *v, BuiltinType v_type) {
if (v_type == BUILTIN_U64) return v->u64;
return (U64)val_to_i64(v, v_type);
}
static void i64_to_val(Value *v, BuiltinType v_type, I64 x) {
switch (v_type) {
case BUILTIN_I8:
v->i8 = (I8)x; break;
case BUILTIN_I16:
v->i16 = (I16)x; break;
case BUILTIN_I32:
v->i32 = (I32)x; break;
case BUILTIN_I64:
v->i64 = (I64)x; break;
case BUILTIN_U8:
v->u8 = (U8)x; break;
case BUILTIN_U16:
v->u16 = (U16)x; break;
case BUILTIN_U32:
v->u32 = (U32)x; break;
case BUILTIN_U64:
v->u64 = (U64)x; break;
default: assert(0); break;
}
}
static void u64_to_val(Value *v, BuiltinType v_type, U64 x) {
if (v_type == BUILTIN_U64)
v->u64 = x;
else
i64_to_val(v, v_type, (I64)x);
}
/* rerturns a pointer to the underlying data of v, e.g. an I64 * if t is the builtin BUILTIN_I64 */
static void *val_get_ptr(Value *v, Type *t) {
assert(t->flags & TYPE_IS_RESOLVED);
switch (t->kind) {
case TYPE_PTR:
case TYPE_BUILTIN:
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_FN:
case TYPE_SLICE:
case TYPE_TYPE:
case TYPE_TUPLE:
return v;
case TYPE_ARR:
return v->arr;
case TYPE_STRUCT:
return v->struc;
case TYPE_EXPR: break;
}
assert(0);
return NULL;
}
static void fprint_val_ptr(FILE *f, void *p, Type *t) {
assert(t->flags & TYPE_IS_RESOLVED);
switch (t->kind) {
case TYPE_VOID:
fprintf(f, "(void)");
break;
case TYPE_UNKNOWN:
fprintf(f, "???");
break;
case TYPE_BUILTIN:
switch (t->builtin) {
case BUILTIN_I8: fprintf(f, "%"PRId8, *(I8 *)p); break;
case BUILTIN_U8: fprintf(f, "%"PRIu8, *(U8 *)p); break;
case BUILTIN_I16: fprintf(f, "%"PRId16, *(I16 *)p); break;
case BUILTIN_U16: fprintf(f, "%"PRIu16, *(U16 *)p); break;
case BUILTIN_I32: fprintf(f, "%"PRId32, *(I32 *)p); break;
case BUILTIN_U32: fprintf(f, "%"PRIu32, *(U32 *)p); break;
case BUILTIN_I64: fprintf(f, "%"PRId64, *(I64 *)p); break;
case BUILTIN_U64: fprintf(f, "%"PRIu64, *(U64 *)p); break;
case BUILTIN_F32: fprintf(f, F32_FMT, *(F32 *)p); break;
case BUILTIN_F64: fprintf(f, F64_FMT, *(F64 *)p); break;
case BUILTIN_CHAR: fprintf(f, "'%c'", *(char *)p); break;
case BUILTIN_BOOL: fprintf(f, "%s", *(bool *)p ? "true" : "false"); break;
}
break;
case TYPE_FN:
fprintf(f, "", (void *)*(FnExpr **)p);
break;
case TYPE_TUPLE: {
Value *tuple = *(Value **)p;
fprintf(f, "(");
for (size_t i = 0; i < arr_len(t->tuple); ++i) {
if (i) fprintf(f, ", ");
fprint_val(f, tuple[i], &t->tuple[i]);
}
fprintf(f, ")");
} break;
case TYPE_ARR: {
fprintf(f, "["); /* TODO: change? when array initializers are added */
size_t n = t->arr.n;
if (n > 5) n = 5;
for (size_t i = 0; i < n; ++i) {
if (i) fprintf(f, ", ");
fprint_val_ptr(f, (char *)p + i * compiler_sizeof(t->arr.of), t->arr.of);
}
if (t->arr.n > n) {
fprintf(f, ", ...");
}
fprintf(f, "]");
} break;
case TYPE_PTR:
fprintf(f, "", *(void **)p);
break;
case TYPE_SLICE: {
fprintf(f, "["); /* TODO: change? when slice initializers are added */
Slice slice = *(Slice *)p;
I64 n = slice.n;
if (n > 5) n = 5;
for (I64 i = 0; i < n; ++i) {
if (i) fprintf(f, ", ");
fprint_val_ptr(f, (char *)slice.data + i * (I64)compiler_sizeof(t->arr.of), t->arr.of);
}
if (slice.n > n) {
fprintf(f, ", ...");
}
fprintf(f, "]");
} break;
case TYPE_TYPE:
fprint_type(f, *(Type **)p);
break;
case TYPE_STRUCT:
fprintf(f, "["); /* TODO: change? when struct initializers are added */
arr_foreach(t->struc->fields, Field, fi) {
if (fi != t->struc->fields)
fprintf(f, ", ");
fprint_ident(f, fi->name);
fprintf(f, ": ");
fprint_val_ptr(f, (char *)p + fi->offset, fi->type);
}
fprintf(f, "]");
break;
case TYPE_EXPR:
assert(0);
break;
}
}
static void fprint_val(FILE *f, Value v, Type *t) {
fprint_val_ptr(f, val_get_ptr(&v, t), t);
}
static void print_val(Value v, Type *t) {
fprint_val(stdout, v, t);
printf("\n");
}
static void *val_ptr_to_free(Value *v, Type *t) {
assert(t->flags & TYPE_IS_RESOLVED);
switch (t->kind) {
case TYPE_BUILTIN:
case TYPE_FN:
case TYPE_PTR:
case TYPE_SLICE:
case TYPE_VOID:
case TYPE_TYPE:
case TYPE_UNKNOWN:
return NULL;
case TYPE_ARR:
return v->arr;
case TYPE_TUPLE:
return v->tuple;
case TYPE_STRUCT:
return v->struc;
case TYPE_EXPR:
break;
}
assert(0); return NULL;
}
static void val_free(Value *v, Type *t) {
free(val_ptr_to_free(v, t));
}
#define builtin_casts_to_int(x) \
case BUILTIN_I8: \
vout->i8 = (I8)vin->x; break; \
case BUILTIN_I16: \
vout->i16 = (I16)vin->x; break; \
case BUILTIN_I32: \
vout->i32 = (I32)vin->x; break; \
case BUILTIN_I64: \
vout->i64 = (I64)vin->x; break; \
case BUILTIN_U8: \
vout->u8 = (U8)vin->x; break; \
case BUILTIN_U16: \
vout->u16 = (U16)vin->x; break; \
case BUILTIN_U32: \
vout->u32 = (U32)vin->x; break; \
case BUILTIN_U64: \
vout->u64 = (U64)vin->x; break
#define builtin_casts_to_num(x) \
builtin_casts_to_int(x); \
case BUILTIN_F32: \
vout->f32 = (F32)vin->x; break; \
case BUILTIN_F64: \
vout->f64 = (F64)vin->x; break
#define builtin_int_casts(low, up) \
case BUILTIN_##up: \
switch (to) { \
builtin_casts_to_num(low); \
case BUILTIN_CHAR: vout->charv = (char)vin->low; break; \
case BUILTIN_BOOL: vout->boolv = vin->low != 0; break; \
} break
#define builtin_float_casts(low, up) \
case BUILTIN_##up: \
switch (to) { \
builtin_casts_to_num(low); \
case BUILTIN_BOOL: vout->boolv = vin->low != 0.0f; break; \
case BUILTIN_CHAR: \
assert(0); break; \
} break
static void val_builtin_cast(Value *vin, BuiltinType from, Value *vout, BuiltinType to) {
if (from == to) {
*vout = *vin;
return;
}
switch (from) {
builtin_int_casts(i8, I8);
builtin_int_casts(i16, I16);
builtin_int_casts(i32, I32);
builtin_int_casts(i64, I64);
builtin_int_casts(u8, U8);
builtin_int_casts(u16, U16);
builtin_int_casts(u32, U32);
builtin_int_casts(u64, U64);
builtin_float_casts(f32, F32);
builtin_float_casts(f64, F64);
case BUILTIN_BOOL: vout->boolv = builtin_truthiness(vin, from); break;
case BUILTIN_CHAR:
switch (to) {
builtin_casts_to_int(charv);
case BUILTIN_CHAR: /* handled at top of func */
case BUILTIN_F32:
case BUILTIN_F64:
case BUILTIN_BOOL:
assert(0); break;
}
break;
}
}
static void val_cast(Value *vin, Type *from, Value *vout, Type *to) {
assert(from->flags & TYPE_IS_RESOLVED);
assert(to->flags & TYPE_IS_RESOLVED);
if (to->kind == TYPE_BUILTIN && to->builtin == BUILTIN_BOOL) {
vout->boolv = val_truthiness(vin, from);
return;
}
switch (from->kind) {
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_TYPE:
case TYPE_STRUCT:
case TYPE_EXPR:
assert(0); break;
case TYPE_BUILTIN:
switch (to->kind) {
case TYPE_BUILTIN:
val_builtin_cast(vin, from->builtin, vout, to->builtin);
break;
case TYPE_PTR:
switch (from->builtin) {
case BUILTIN_I8: vout->ptr = (void *)(U64)vin->i8; break;
case BUILTIN_I16: vout->ptr = (void *)(U64)vin->i16; break;
case BUILTIN_I32: vout->ptr = (void *)(U64)vin->i32; break;
case BUILTIN_I64: vout->ptr = (void *)(U64)vin->i64; break;
case BUILTIN_U8: vout->ptr = (void *)(U64)vin->u8; break;
case BUILTIN_U16: vout->ptr = (void *)(U64)vin->u16; break;
case BUILTIN_U32: vout->ptr = (void *)(U64)vin->u32; break;
case BUILTIN_U64: vout->ptr = (void *)(U64)vin->u64; break;
default: assert(0); break;
}
break;
case TYPE_EXPR:
case TYPE_STRUCT:
case TYPE_SLICE:
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_FN:
case TYPE_ARR:
case TYPE_TYPE:
assert(0);
break;
}
break;
case TYPE_FN:
switch (to->kind) {
case TYPE_PTR:
vout->ptr = (void *)vin->fn;
break;
case TYPE_FN:
vout->fn = vin->fn;
break;
case TYPE_SLICE:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_ARR:
case TYPE_BUILTIN:
case TYPE_TYPE:
case TYPE_STRUCT:
case TYPE_EXPR:
assert(0); break;
}
break;
case TYPE_PTR:
switch (to->kind) {
case TYPE_BUILTIN:
switch (to->builtin) {
builtin_casts_to_int(ptr);
case BUILTIN_BOOL:
case BUILTIN_CHAR:
case BUILTIN_F32:
case BUILTIN_F64:
assert(0); break;
}
break;
case TYPE_ARR:
vout->arr = vin->ptr;
break;
case TYPE_PTR:
vout->ptr = vin->ptr;
break;
case TYPE_FN:
vout->fn = vin->ptr;
break;
case TYPE_SLICE:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_EXPR:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0);
break;
}
break;
case TYPE_ARR:
switch (to->kind) {
case TYPE_PTR:
vout->ptr = vin->arr;
break;
case TYPE_ARR:
vout->arr = vin->arr;
break;
case TYPE_EXPR:
case TYPE_SLICE:
case TYPE_FN:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_BUILTIN:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0); break;
}
break;
case TYPE_SLICE:
switch (to->kind) {
case TYPE_PTR:
vout->ptr = vin->slice.data;
break;
case TYPE_ARR:
vout->arr = vin->slice.data;
break;
case TYPE_SLICE:
vout->slice = vin->slice;
break;
case TYPE_FN:
case TYPE_UNKNOWN:
case TYPE_TUPLE:
case TYPE_VOID:
case TYPE_BUILTIN:
case TYPE_EXPR:
case TYPE_TYPE:
case TYPE_STRUCT:
assert(0); break;
}
break;
}
}
/* type is the underlying type, not the pointer type. */
static void eval_deref(Value *v, void *ptr, Type *type) {
assert(type->flags & TYPE_IS_RESOLVED);
switch (type->kind) {
case TYPE_PTR: v->ptr = *(void **)ptr; break;
case TYPE_ARR: v->arr = ptr; break; /* when we have a pointer to an array, it points directly to the data in that array. */
case TYPE_STRUCT: v->struc = ptr; break; /* same for structs */
case TYPE_FN: v->fn = *(FnExpr **)ptr; break;
case TYPE_TUPLE: v->tuple = *(Value **)ptr; break;
case TYPE_BUILTIN:
switch (type->builtin) {
case BUILTIN_I8: v->i8 = *(I8 *)ptr; break;
case BUILTIN_U8: v->u8 = *(U8 *)ptr; break;
case BUILTIN_I16: v->i16 = *(I16 *)ptr; break;
case BUILTIN_U16: v->u16 = *(U16 *)ptr; break;
case BUILTIN_I32: v->i32 = *(I32 *)ptr; break;
case BUILTIN_U32: v->u32 = *(U32 *)ptr; break;
case BUILTIN_I64: v->i64 = *(I64 *)ptr; break;
case BUILTIN_U64: v->u64 = *(U64 *)ptr; break;
case BUILTIN_F32: v->f32 = *(F32 *)ptr; break;
case BUILTIN_F64: v->f64 = *(F64 *)ptr; break;
case BUILTIN_CHAR: v->charv = *(char *)ptr; break;
case BUILTIN_BOOL: v->boolv = *(bool *)ptr; break;
}
break;
case TYPE_SLICE:
v->slice = *(Slice *)ptr;
break;
case TYPE_TYPE:
v->type = *(Type **)ptr;
break;
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_EXPR:
assert(0);
break;
}
}
/* inverse of eval_deref */
static void eval_deref_set(void *set, Value *to, Type *type) {
assert(type->flags & TYPE_IS_RESOLVED);
switch (type->kind) {
case TYPE_PTR: *(void **)set = to->ptr; break;
case TYPE_ARR: memcpy(set, to->arr, compiler_sizeof(type)); break; /* TODO: test this */
case TYPE_STRUCT: memcpy(set, to->struc, compiler_sizeof(type)); break;
case TYPE_FN: *(FnExpr **)set = to->fn; break;
case TYPE_TUPLE: *(Value **)set = to->tuple; break;
case TYPE_BUILTIN:
switch (type->builtin) {
case BUILTIN_I8: *(I8 *)set = to->i8; break;
case BUILTIN_U8: *(U8 *)set = to->u8; break;
case BUILTIN_I16: *(I16 *)set = to->i16; break;
case BUILTIN_U16: *(U16 *)set = to->u16; break;
case BUILTIN_I32: *(I32 *)set = to->i32; break;
case BUILTIN_U32: *(U32 *)set = to->u32; break;
case BUILTIN_I64: *(I64 *)set = to->i64; break;
case BUILTIN_U64: *(U64 *)set = to->u64; break;
case BUILTIN_F32: *(F32 *)set = to->f32; break;
case BUILTIN_F64: *(F64 *)set = to->f64; break;
case BUILTIN_CHAR: *(char *)set = to->charv; break;
case BUILTIN_BOOL: *(bool *)set = to->boolv; break;
}
break;
case TYPE_SLICE:
*(Slice *)set = to->slice;
break;
case TYPE_TYPE:
*(Type **)set = to->type;
break;
case TYPE_VOID:
case TYPE_UNKNOWN:
case TYPE_EXPR:
assert(0);
break;
}
}
static bool eval_val_ptr_at_index(Location where, Value *arr, U64 i, Type *arr_type, void **ptr, Type **type) {
switch (arr_type->kind) {
case TYPE_ARR: {
U64 arr_sz = (U64)arr_type->arr.n;
if (i >= arr_sz) {
err_print(where, "Array out of bounds (%lu, array size = %lu)\n", (unsigned long)i, (unsigned long)arr_sz);
return false;
}
*ptr = (char *)arr->arr + compiler_sizeof(arr_type->arr.of) * i;
if (type) *type = arr_type->arr.of;
} break;
case TYPE_SLICE: {
U64 slice_sz = (U64)arr->slice.n;
if (i >= slice_sz) {
err_print(where, "Slice out of bounds (%lu, slice size = %lu)\n", (unsigned long)i, (unsigned long)slice_sz);
return false;
}
*ptr = (char *)arr->slice.data + compiler_sizeof(arr_type->slice) * i;
if (type) *type = arr_type->slice;
} break;
default: assert(0); break;
}
return true;
}
static bool eval_expr_ptr_at_index(Evaluator *ev, Expression *e, void **ptr, Type **type) {
Value arr;
if (!eval_expr(ev, e->binary.lhs, &arr)) return false;
Value index;
if (!eval_expr(ev, e->binary.rhs, &index)) return false;
Type *ltype = &e->binary.lhs->type;
Type *rtype = &e->binary.rhs->type;
U64 i;
assert(rtype->kind == TYPE_BUILTIN);
if (rtype->builtin == BUILTIN_U64) {
i = index.u64;
} else {
I64 signed_index = val_to_i64(&index, rtype->builtin);
if (signed_index < 0) {
err_print(e->where, "Array or slice out of bounds (index = %ld)\n", (long)signed_index);
return false;
}
i = (U64)signed_index;
}
return eval_val_ptr_at_index(e->where, &arr, i, ltype, ptr, type);
}
static void *eval_ptr_to_struct_field(Evaluator *ev, Expression *dot_expr) {
Type *struct_type = &dot_expr->binary.lhs->type;
bool is_ptr = struct_type->kind == TYPE_PTR;
if (is_ptr) {
struct_type = struct_type->ptr;
}
eval_struct_find_offsets(struct_type);
Value struc;
if (!eval_expr(ev, dot_expr->binary.lhs, &struc))
return NULL;
void *struc_data;
if (is_ptr) {
struc_data = *(void **)struc.ptr;
} else {
struc_data = struc.struc;
}
return (char *)struc_data + dot_expr->binary.field->offset;
}
static bool eval_address_of(Evaluator *ev, Expression *e, void **ptr) {
switch (e->kind) {
case EXPR_IDENT: {
IdentDecl *id = ident_decl(e->ident);
if (!(id->flags & IDECL_HAS_VAL)) {
err_print(e->where, "Cannot take address of run time variable at compile time.");
return false;
}
if (e->type.kind == TYPE_ARR)
*ptr = id->val.arr; /* point directly to data */
else if (e->type.kind == TYPE_STRUCT)
*ptr = id->val.struc;
else
*ptr = &id->val;
} break;
case EXPR_UNARY_OP:
switch (e->unary.op) {
case UNARY_DEREF: {
Value v;
if (!eval_expr(ev, e, &v)) return false;
*ptr = v.ptr;
} break;
case UNARY_LEN: {
Value slice;
if (!eval_expr(ev, e, &slice)) return false;
*ptr = &slice.slice.n;
} break;
default: assert(0); return false;
}
break;
case EXPR_BINARY_OP:
switch (e->binary.op) {
case BINARY_AT_INDEX: {
if (!eval_expr_ptr_at_index(ev, e, ptr, NULL))
return false;
} break;
case BINARY_DOT: {
Value struc;
if (!eval_expr(ev, e->binary.lhs, &struc))
return false;
*ptr = eval_ptr_to_struct_field(ev, e);
if (!*ptr)
return false;
return true;
} break;
default: assert(0); return false;
}
break;
default:
assert(0);
return false;
}
return true;
}
static bool eval_set(Evaluator *ev, Expression *set, Value *to) {
switch (set->kind) {
case EXPR_IDENT: {
IdentDecl *id = ident_decl(set->ident);
if (!(id->flags & IDECL_HAS_VAL)) {
err_print(set->where, "Cannot set value of run time variable at compile time.");
return false;
}
id->val = *to;
} break;
case EXPR_UNARY_OP:
switch (set->unary.op) {
case UNARY_DEREF: {
Value ptr;
if (!eval_expr(ev, set->unary.of, &ptr)) return false;
eval_deref_set(ptr.ptr, to, &set->type);
} break;
case UNARY_LEN: {
Type *of_type = &set->unary.of->type;
if (of_type->kind == TYPE_PTR) {
/* if it's a pointer, we can just eval it and set its length */
Value of;
if (!eval_expr(ev, set->unary.of, &of)) return false;
((Slice *)of.ptr)->n = to->i64;
} else {
/* otherwise, we need a pointer to the slice */
void *p;
if (!eval_address_of(ev, set->unary.of, &p))
return false;
((Slice *)p)->n = to->i64;
}
} break;
default: assert(0); break;
}
break;
case EXPR_BINARY_OP:
switch (set->binary.op) {
case BINARY_AT_INDEX: {
void *ptr;
Type *type;
/* get pointer to x[i] */
if (!eval_expr_ptr_at_index(ev, set, &ptr, &type))
return false;
/* set it to to */
eval_deref_set(ptr, to, type);
} break;
case BINARY_DOT: {
void *ptr = eval_ptr_to_struct_field(ev, set);
if (!ptr) return false;
eval_deref_set(ptr, to, set->binary.field->type);
} break;
default: assert(0); break;
}
break;
case EXPR_TUPLE:
for (size_t i = 0; i < arr_len(set->tuple); ++i) {
if (!eval_set(ev, &set->tuple[i], &to->tuple[i]))
return false;
}
break;
default:
assert(0);
break;
}
return true;
}
static void eval_numerical_bin_op(Value lhs, Type *lhs_type, BinaryOp op, Value rhs, Type *rhs_type, Value *out, Type *out_type) {
/* WARNING: macros ahead */
#define eval_unary_op_nums_only(op) \
switch (builtin) { \
eval_unary_op_nums(builtin, op); \
default: assert(0); break; \
}
#define eval_binary_op_one(low, up, op) \
case BUILTIN_##up: \
out->low = (up)(lhs.low op rhs.low); break
#define eval_binary_op_nums(builtin, op) \
eval_binary_op_one(i8, I8, op); \
eval_binary_op_one(i16, I16, op); \
eval_binary_op_one(i32, I32, op); \
eval_binary_op_one(i64, I64, op); \
eval_binary_op_one(u8, U8, op); \
eval_binary_op_one(u16, U16, op); \
eval_binary_op_one(u32, U32, op); \
eval_binary_op_one(u64, U64, op); \
eval_binary_op_one(f32, F32, op); \
eval_binary_op_one(f64, F64, op)
#define eval_binary_op_nums_only(op) \
val_cast(&lhs, lhs_type, &lhs, out_type); \
val_cast(&rhs, rhs_type, &rhs, out_type); \
assert(out_type->kind == TYPE_BUILTIN); \
switch (builtin) { \
eval_binary_op_nums(builtin, op); \
default: assert(0); break; \
}
#define eval_binary_bool_op_one(low, up, op) \
case BUILTIN_##up: \
out->boolv = lhs.low op rhs.low; break
#define eval_binary_bool_op_nums(builtin, op) \
eval_binary_bool_op_one(i8, I8, op); \
eval_binary_bool_op_one(i16, I16, op); \
eval_binary_bool_op_one(i32, I32, op); \
eval_binary_bool_op_one(i64, I64, op); \
eval_binary_bool_op_one(u8, U8, op); \
eval_binary_bool_op_one(u16, U16, op); \
eval_binary_bool_op_one(u32, U32, op); \
eval_binary_bool_op_one(u64, U64, op); \
eval_binary_bool_op_one(f32, F32, op); \
eval_binary_bool_op_one(f64, F64, op); \
eval_binary_bool_op_one(boolv, BOOL, op); \
eval_binary_bool_op_one(charv, CHAR, op);
#define eval_binary_bool_op_nums_only(op) \
{Type *cast_to = lhs_type->flags & TYPE_IS_FLEXIBLE ? \
rhs_type : lhs_type; \
val_cast(&lhs, lhs_type, &lhs, cast_to); \
val_cast(&rhs, rhs_type, &rhs, cast_to); \
assert(lhs_type->kind == TYPE_BUILTIN); \
switch (builtin) { \
eval_binary_bool_op_nums(builtin, op); \
default: \
assert(!("Invalid builtin to "#op)[0]); break; \
}}
#define eval_binary_bool_op(op) \
if (lhs_type->kind == TYPE_PTR) \
out->boolv = lhs.ptr op rhs.ptr; \
else { eval_binary_bool_op_nums_only(op); }
BuiltinType builtin = out_type->builtin;
switch (op) {
case BINARY_ADD:
if (lhs_type->kind == TYPE_PTR) {
out->ptr = (char *)lhs.ptr + val_to_i64(&rhs, rhs_type->builtin)
* (I64)compiler_sizeof(lhs_type->ptr);
} else {
eval_binary_op_nums_only(+);
}
break;
case BINARY_SUB:
if (lhs_type->kind == TYPE_PTR) {
out->ptr = (char *)lhs.ptr - val_to_i64(&rhs, rhs_type->builtin)
* (I64)compiler_sizeof(lhs_type->ptr);
} else {
eval_binary_op_nums_only(-);
}
break;
case BINARY_MUL:
eval_binary_op_nums_only(*); break;
case BINARY_DIV:
eval_binary_op_nums_only(/); break;
case BINARY_LT:
eval_binary_bool_op(<); break;
case BINARY_LE:
eval_binary_bool_op(<=); break;
case BINARY_GT:
eval_binary_bool_op(>); break;
case BINARY_GE:
eval_binary_bool_op(>=); break;
case BINARY_EQ:
eval_binary_bool_op(==); break;
case BINARY_NE:
eval_binary_bool_op(!=); break;
default: assert(0); break;
}
}
static Value val_zero(Type *t) {
Value val = {0};
switch (t->kind) {
case TYPE_STRUCT:
val.struc = err_calloc(1, compiler_sizeof(t));
break;
case TYPE_ARR:
val.arr = err_calloc(t->arr.n, compiler_sizeof(t->arr.of));
break;
default:
break;
}
return val;
}
static bool val_is_nonnegative(Value *v, Type *t) {
switch (t->builtin) {
case BUILTIN_BOOL: assert(0); return false;
case BUILTIN_CHAR: return v->charv >= 0;
case BUILTIN_F32: return v->f32 >= 0;
case BUILTIN_F64: return v->f64 >= 0;
default: break;
}
if (!type_builtin_is_signed(t->builtin))
return true;
return val_to_i64(v, t->builtin) >= 0;
}
static bool eval_expr(Evaluator *ev, Expression *e, Value *v) {
#define eval_unary_op_one(low, up, op) \
case BUILTIN_##up: \
v->low = (up)(op of.low); break
#define eval_unary_op_nums(builtin, op) \
eval_unary_op_one(i8, I8, op); \
eval_unary_op_one(i16, I16, op); \
eval_unary_op_one(i32, I32, op); \
eval_unary_op_one(i64, I64, op); \
eval_unary_op_one(u8, U8, op); \
eval_unary_op_one(u16, U16, op); \
eval_unary_op_one(u32, U32, op); \
eval_unary_op_one(u64, U64, op); \
eval_unary_op_one(f32, F32, op); \
eval_unary_op_one(f64, F64, op);
if (!ev->enabled) return false; /* silently fail */
switch (e->kind) {
case EXPR_UNARY_OP: {
Value of;
if (e->unary.op != UNARY_ADDRESS) {
if (!eval_expr(ev, e->unary.of, &of)) return false;
}
Type *of_type = &e->unary.of->type;
switch (e->unary.op) {
case UNARY_ADDRESS: {
Expression *o = e->unary.of;
if (o->type.kind == TYPE_TYPE) {
if (!eval_expr(ev, e->unary.of, &of)) return false;
/* "address" of type (pointer to type) */
v->type = evalr_malloc(ev, sizeof *v->type); /* TODO: this might be bad in the future; should free this at some point */
v->type->flags = 0;
v->type->kind = TYPE_PTR;
v->type->ptr = of.type;
break;
}
if (!eval_address_of(ev, o, &v->ptr))
return false;
} break;
case UNARY_DEREF:
eval_deref(v, of.ptr, &e->type);
break;
case UNARY_MINUS: {
BuiltinType builtin = e->type.builtin;
assert(e->type.kind == TYPE_BUILTIN);
eval_unary_op_nums_only(-);
} break;
case UNARY_NOT:
v->boolv = !val_truthiness(v, &e->unary.of->type);
break;
case UNARY_DEL:
if (of_type->kind == TYPE_PTR)
free(of.ptr);
else {
assert(of_type->kind == TYPE_SLICE);
free(of.slice.data);
}
break;
case UNARY_LEN:
if (of_type->kind == TYPE_PTR) {
/* dereference of */
eval_deref(&of, of.ptr, of_type->ptr);
of_type = of_type->ptr;
}
switch (of_type->kind) {
case TYPE_SLICE:
v->i64 = of.slice.n;
break;
case TYPE_ARR:
v->i64 = (I64)of_type->arr.n;
break;
default: assert(0); break;
}
break;
}
} break;
case EXPR_BINARY_OP: {
Value lhs, rhs;
Expression *lhs_expr = e->binary.lhs, *rhs_expr = e->binary.rhs;
if (e->binary.op != BINARY_SET)
if (!eval_expr(ev, lhs_expr, &lhs)) return false;
if (e->binary.op != BINARY_DOT)
if (!eval_expr(ev, rhs_expr, &rhs)) return false;
switch (e->binary.op) {
case BINARY_DOT: {
void *ptr = eval_ptr_to_struct_field(ev, e);
if (!ptr) return false;
eval_deref(v, ptr, &e->type);
} break;
case BINARY_ADD:
case BINARY_SUB:
case BINARY_MUL:
case BINARY_DIV:
case BINARY_LT:
case BINARY_LE:
case BINARY_GT:
case BINARY_GE:
case BINARY_EQ:
case BINARY_NE:
eval_numerical_bin_op(lhs, &e->binary.lhs->type, e->binary.op, rhs, &e->binary.rhs->type, v, &e->type);
break;
case BINARY_SET:
if (!eval_set(ev, e->binary.lhs, &rhs)) return false;
break;
case BINARY_SET_ADD:
case BINARY_SET_SUB:
case BINARY_SET_MUL:
case BINARY_SET_DIV: {
BinaryOp subop = (BinaryOp)0;
switch (e->binary.op) {
case BINARY_SET_ADD: subop = BINARY_ADD; break;
case BINARY_SET_SUB: subop = BINARY_SUB; break;
case BINARY_SET_MUL: subop = BINARY_MUL; break;
case BINARY_SET_DIV: subop = BINARY_DIV; break;
default: assert(0);
}
eval_numerical_bin_op(lhs, &e->binary.lhs->type, subop, rhs, &e->binary.rhs->type, v, &e->binary.lhs->type);
if (!eval_set(ev, e->binary.lhs, v)) return false;
break;
} break;
case BINARY_AT_INDEX: {
void *ptr;
Type *type;
eval_expr_ptr_at_index(ev, e, &ptr, &type);
eval_deref(v, ptr, type);
} break;
}
} break;
case EXPR_LITERAL_INT:
assert(e->type.kind == TYPE_BUILTIN);
u64_to_val(v, e->type.builtin, (U64)e->intl);
break;
case EXPR_LITERAL_FLOAT:
assert(e->type.kind == TYPE_BUILTIN);
if (e->type.builtin == BUILTIN_F32) {
v->f32 = (F32)e->floatl;
} else if (e->type.builtin == BUILTIN_F64) {
v->f64 = (F64)e->floatl;
} else {
assert(0);
}
break;
case EXPR_IF: {
IfExpr *i = &e->if_;
if (i->cond) {
Value cond;
if (!eval_expr(ev, i->cond, &cond)) return false;
if (val_truthiness(&cond, &i->cond->type)) {
if (!eval_block(ev, &i->body, &e->type, v)) return false;
} else if (i->next_elif) {
if (!eval_expr(ev, i->next_elif, v)) return false;
}
} else {
if (!eval_block(ev, &i->body, &e->type, v)) return false;
}
} break;
case EXPR_WHILE: {
Value cond;
WhileExpr *w = &e->while_;
while (1) {
if (w->cond) {
if (!eval_expr(ev, w->cond, &cond)) return false;
Type *cond_type = &w->cond->type;
if (!val_truthiness(&cond, cond_type))
break;
}
if (!eval_block(ev, &w->body, &e->type, v)) return false;
}
} break;
case EXPR_EACH: {
EachExpr *ea = e->each;
if (ea->flags & EACH_IS_RANGE) {
Value from, to;
Value stepval;
stepval.i64 = 1;
Type i64t = {0};
i64t.flags = TYPE_IS_RESOLVED;
i64t.kind = TYPE_BUILTIN;
i64t.builtin = BUILTIN_I64;
if (!eval_expr(ev, ea->range.from, &from)) return false;
if (ea->range.to && !eval_expr(ev, ea->range.to, &to)) return false;
if (ea->range.stepval)
stepval = *ea->range.stepval;
Value x = from;
Value *index_val;
Value *value_val;
if (!each_enter(e)) return false;
if (ea->index) {
IdentDecl *idecl = ident_decl(ea->index);
idecl->flags |= IDECL_HAS_VAL;
index_val = &idecl->val;
} else {
index_val = NULL;
}
if (ea->value) {
IdentDecl *idecl = ident_decl(ea->value);
idecl->flags |= IDECL_HAS_VAL;
value_val = &idecl->val;
} else {
value_val = NULL;
}
bool step_is_negative = ea->range.stepval && !val_is_nonnegative(&stepval, &ea->type);
if (index_val) index_val->i64 = 0;
while (1) {
if (ea->range.to) {
/* check if loop has ended */
Value lhs = x;
Value rhs = to;
assert(ea->type.kind == TYPE_BUILTIN);
Type boolt = {0};
boolt.flags = TYPE_IS_RESOLVED;
boolt.kind = TYPE_BUILTIN;
boolt.builtin = BUILTIN_BOOL;
Value cont;
eval_numerical_bin_op(lhs, &ea->type, step_is_negative ? BINARY_GE : BINARY_LE, rhs, &ea->range.to->type, &cont, &boolt);
if (!cont.boolv) break;
}
if (value_val) *value_val = x;
if (!eval_block(ev, &ea->body, &e->type, v)) return false;
if (index_val) {
++index_val->i64;
}
eval_numerical_bin_op(x, &ea->type, BINARY_ADD, stepval, ea->range.stepval ? &ea->type : &i64t, &x, &ea->type);
}
} else {
Value of;
if (!eval_expr(ev, ea->of, &of)) return false;
Value *index_val, *value_val;
Value i, val;
if (!each_enter(e)) return false;
if (ea->index) {
IdentDecl *idecl = ident_decl(ea->index);
idecl->flags |= IDECL_HAS_VAL;
index_val = &idecl->val;
} else {
index_val = &i;
}
if (ea->value) {
IdentDecl *idecl = ident_decl(ea->value);
idecl->flags |= IDECL_HAS_VAL;
value_val = &idecl->val;
} else {
value_val = &val;
}
I64 len;
bool uses_ptr = false;
Type *of_type = &ea->of->type;
if (of_type->kind == TYPE_PTR) {
uses_ptr = true;
of_type = of_type->ptr;
}
switch (of_type->kind) {
case TYPE_ARR:
len = (I64)of_type->arr.n;
if (uses_ptr) {
of.arr = of.ptr;
}
break;
case TYPE_SLICE:
if (uses_ptr) {
of.slice = *(Slice *)of.ptr;
}
len = of.slice.n;
break;
default: assert(0); return false;
}
index_val->i64 = 0;
while (index_val->i64 < len) {
void *ptr;
if (!eval_val_ptr_at_index(e->where, &of, (U64)index_val->i64, of_type, &ptr, NULL))
return false;
if (uses_ptr)
value_val->ptr = ptr;
else
eval_deref(value_val, ptr, &ea->type);
if (!eval_block(ev, &ea->body, &e->type, v))
return false;
++index_val->i64;
}
}
each_exit(e);
} break;
case EXPR_BLOCK:
if (!eval_block(ev, &e->block, &e->type, v)) return false;
break;
case EXPR_LITERAL_BOOL:
v->boolv = e->booll;
break;
case EXPR_LITERAL_CHAR:
v->charv = e->charl;
break;
case EXPR_LITERAL_STR:
v->slice.data = e->strl.str;
v->slice.n = (I64)e->strl.len;
break;
case EXPR_CAST: {
Value casted;
if (!eval_expr(ev, e->cast.expr, &casted)) return false;
val_cast(&casted, &e->cast.expr->type, v, &e->cast.type);
} break;
case EXPR_FN:
v->fn = e->fn;
break;
case EXPR_IDENT: {
IdentDecl *idecl = ident_decl(e->ident);
bool is_decl = idecl->kind == IDECL_DECL;
Declaration *d = NULL;
if (is_decl) {
d = idecl->decl;
if (!types_decl(ev->typer, d)) return false;
assert(d->type.flags & TYPE_IS_RESOLVED);
}
if (idecl->flags & IDECL_HAS_VAL) {
*v = idecl->val;
} else if (is_decl && (d->flags & DECL_IS_CONST)) {
if (!(d->flags & DECL_FOUND_VAL)) {
assert(d->flags & DECL_HAS_EXPR);
if (!eval_expr(ev, &d->expr, &d->val)) return false;
d->flags |= DECL_FOUND_VAL;
}
int index = ident_index_in_decl(e->ident, d);
assert(index != -1);
*v = *decl_val_at_index(d, index);
} else {
char *s = ident_to_str(e->ident);
err_print(e->where, "Cannot evaluate non-constant '%s' at compile time.", s);
free(s);
return false;
}
} break;
case EXPR_TUPLE: {
size_t i, n = arr_len(e->tuple);
v->tuple = err_malloc(n * sizeof *v->tuple);
*(void **)arr_add(&ev->to_free) = v->tuple;
for (i = 0; i < n; ++i) {
if (!eval_expr(ev, &e->tuple[i], &v->tuple[i]))
return false;
}
} break;
case EXPR_C:
err_print(e->where, "Cannot run C code at compile time.");
return false;
case EXPR_DSIZEOF:
case EXPR_DALIGNOF: {
Expression *of = e->kind == EXPR_DSIZEOF ? e->dsizeof.of : e->dalignof.of;
Type *type;
if (of->type.kind == TYPE_TYPE) {
/* it's a type, return the size/align of it */
Value typeval;
if (!eval_expr(ev, of, &typeval)) return false;
type = typeval.type;
if (!type_resolve(ev->typer, type, e->where)) return false;
} else {
/* it's an expression, return the size/align of its type */
type = &of->type;
}
if (e->kind == EXPR_DSIZEOF)
v->i64 = (I64)compiler_sizeof(type);
else
v->i64 = (I64)compiler_alignof(type);
} break;
case EXPR_NEW:
/* it's not strictly necessary to do the if here */
if (e->new.n) {
Value n;
if (!eval_expr(ev, e->new.n, &n))
return false;
U64 n64 = val_to_u64(&n, e->new.n->type.builtin);
v->slice.data = err_calloc(n64, compiler_sizeof(&e->new.type));
v->slice.n = (I64)n64;
} else {
v->ptr = err_calloc(1, compiler_sizeof(&e->new.type));
}
break;
case EXPR_CALL: {
FnExpr *fn;
if (e->call.instance) {
fn = &e->call.instance->fn;
} else {
Value fnv;
if (!eval_expr(ev, e->call.fn, &fnv))
return false;
fn = fnv.fn;
}
/* make sure function body is typed before calling it */
if (!types_block(ev->typer, &fn->body))
return false;
/* set parameter declaration values */
Declaration *params = fn->params;
/* OPTIM (NOTE: currently needed for recursion) */
Value *args = NULL;
arr_resv(&args, arr_len(e->call.arg_exprs));
for (size_t i = 0; i < arr_len(e->call.arg_exprs); ++i) {
if (!eval_expr(ev, &e->call.arg_exprs[i], &args[i]))
return false;
}
fn_enter(fn, 0);
long arg = 0;
arr_foreach(params, Declaration, p) {
int idx = 0;
arr_foreach(p->idents, Identifier, i) {
Type *type = p->type.kind == TYPE_TUPLE ? &p->type.tuple[idx++] : &p->type;
IdentDecl *id = ident_decl(*i);
copy_val(NULL, &id->val, &args[arg], type);
id->flags |= IDECL_HAS_VAL;
++arg;
}
}
arr_foreach(fn->ret_decls, Declaration, d) {
int idx = 0;
Value val;
if (d->flags & DECL_HAS_EXPR)
if (!eval_expr(ev, &d->expr, &val))
return false;
arr_foreach(d->idents, Identifier, i) {
Type *type = d->type.kind == TYPE_TUPLE ? &d->type.tuple[idx] : &d->type;
IdentDecl *id = ident_decl(*i);
if (d->flags & DECL_HAS_EXPR) {
id->val = d->type.kind == TYPE_TUPLE ? val.tuple[idx] : val;
id->flags |= IDECL_HAS_VAL;
} else {
id->flags |= IDECL_HAS_VAL;
id->val = val_zero(type);
}
++idx;
}
}
arr_clear(&args);
if (!eval_block(ev, &fn->body, &e->type, v)) {
fn_exit(fn);
return false;
}
if (fn->ret_decls) {
Value *tuple = NULL;
arr_foreach(fn->ret_decls, Declaration, d) {
int i = 0;
arr_foreach(d->idents, Identifier, ident) {
Value this_one;
Expression expr;
expr.flags = EXPR_FOUND_TYPE;
expr.kind = EXPR_IDENT;
expr.ident = *ident;
if (!eval_expr(ev, &expr, &this_one))
return false;
Value *element = arr_add(&tuple);
Type *type = decl_type_at_index(d, i);
copy_val(NULL, element, &this_one, type);
void *to_free = val_ptr_to_free(element, type);
if (to_free)
*(void **)arr_add(&ev->to_free) = to_free;
++i;
}
}
if (arr_len(tuple) == 1) {
*v = tuple[0];
arr_clear(&tuple);
} else {
v->tuple = tuple;
}
}
if (ev->returning) {
if (fn->ret_type.kind != TYPE_VOID && !fn->ret_decls)
*v = ev->ret_val;
ev->returning = false;
}
fn_exit(fn);
} break;
case EXPR_SLICE: {
SliceExpr *s = &e->slice;
Value ofv;
Type *of_type = &s->of->type;
if (!eval_expr(ev, s->of, &ofv))
return false;
U64 n = of_type->kind == TYPE_ARR ? of_type->arr.n : (U64)ofv.slice.n;
U64 from, to;
if (s->from) {
Value fromv;
if (!eval_expr(ev, s->from, &fromv))
return false;
assert(s->from->type.kind == TYPE_BUILTIN);
from = val_to_u64(&fromv, s->from->type.builtin);
} else {
from = 0;
}
if (s->to) {
Value tov;
if (!eval_expr(ev, s->to, &tov))
return false;
assert(s->to->type.kind == TYPE_BUILTIN);
to = val_to_u64(&tov, s->to->type.builtin);
} else {
to = n - 1;
}
/* TODO: is this the best check? (Go also checks if from > to) */
if (to > n) {
err_print(e->where, "Slice index out of bounds (to = %lu, length = %lu).", (unsigned long)to, (unsigned long)n);
return false;
}
void *ptr1, *ptr2;
if (from < to) {
if (!eval_val_ptr_at_index(e->where, &ofv, from, of_type, &ptr1, NULL))
return false;
if (!eval_val_ptr_at_index(e->where, &ofv, to, of_type, &ptr2, NULL))
return false;
v->slice.data = ptr1;
v->slice.n = (I64)(to - from);
} else {
v->slice.data = NULL;
v->slice.n = 0;
}
} break;
case EXPR_TYPE:
v->type = &e->typeval;
break;
case EXPR_VAL:
*v = e->val;
break;
}
return true;
}
static bool eval_decl(Evaluator *ev, Declaration *d) {
unsigned has_expr = d->flags & DECL_HAS_EXPR;
unsigned is_const = d->flags & DECL_IS_CONST;
Value val = {0};
if (has_expr) {
if (is_const) {
if (!(d->flags & DECL_FOUND_VAL)) {
if (!eval_expr(ev, &d->expr, &d->val))
return false;
d->flags |= DECL_FOUND_VAL;
}
} else {
/* TODO: tuples allocated here will never be freed! */
if (!eval_expr(ev, &d->expr, &val))
return false;
}
}
if (!is_const) {
int index = 0;
arr_foreach(d->idents, Identifier, i) {
IdentDecl *id = ident_decl(*i);
Type *type = decl_type_at_index(d, index);
if (!is_const) {
if (has_expr) {
copy_val(NULL, &id->val, &val, type);
} else {
id->val = val_zero(type);
}
}
++index;
id->flags |= IDECL_HAS_VAL;
}
}
return true;
}
static bool eval_stmt(Evaluator *ev, Statement *stmt) {
switch (stmt->kind) {
case STMT_DECL:
if (!eval_decl(ev, &stmt->decl)) return false;
break;
case STMT_EXPR: {
Value unused;
if (!eval_expr(ev, &stmt->expr, &unused))
return false;
} break;
case STMT_RET: {
Value r;
if (!eval_expr(ev, &stmt->ret.expr, &r))
return false;
copy_val(NULL, &ev->ret_val, &r, &stmt->ret.expr.type);
} break;
}
return true;
}
/* t is the type of the block. */
static bool eval_block(Evaluator *ev, Block *b, Type *t, Value *v) {
void **prev_to_free = ev->to_free;
ev->to_free = NULL;
block_enter(b, b->stmts, 0);
arr_foreach(b->stmts, Statement, stmt) {
if (!eval_stmt(ev, stmt))
return false;
if (ev->returning) break;
}
if (!ev->returning && b->ret_expr) {
Value r;
if (!eval_expr(ev, b->ret_expr, &r))
return false;
/* make a copy so that r's data isn't freed when we exit the block */
copy_val(NULL, v, &r, &b->ret_expr->type);
void *free_ptr = val_ptr_to_free(v, t);
if (free_ptr)
*(void **)arr_add(&prev_to_free) = free_ptr;
}
block_exit(b, b->stmts);
typedef void *VoidPtr;
arr_foreach(ev->to_free, VoidPtr, f) {
free(*f);
}
arr_clear(&ev->to_free);
ev->to_free = prev_to_free;
return true;
}