1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
static void node_switch_to_tab(Ted *ted, Node *node, u16 new_tab_index) {
node->active_tab = new_tab_index;
if (node == ted->active_node) {
// switch active buffer
assert(node->tabs);
u16 buffer_idx = node->tabs[new_tab_index];
ted_switch_to_buffer(ted, &ted->buffers[buffer_idx]);
}
}
// move n tabs to the right
static void node_tab_next(Ted *ted, Node *node, i64 n) {
assert(node->tabs);
u16 ntabs = (u16)arr_len(node->tabs);
u16 tab_idx = (u16)mod_i64(node->active_tab + n, ntabs);
node_switch_to_tab(ted, node, tab_idx);
}
static void node_tab_prev(Ted *ted, Node *node, i64 n) {
node_tab_next(ted, node, -n);
}
static void node_tab_switch(Ted *ted, Node *node, i64 tab) {
assert(node->tabs);
if (tab < arr_len(node->tabs)) {
node_switch_to_tab(ted, node, (u16)tab);
}
}
static void node_free(Node *node) {
arr_free(node->tabs);
memset(node, 0, sizeof *node);
}
// returns index of parent in ted->nodes, or -1 if this is the root node.
static i32 node_parent(Ted *ted, u16 node_idx) {
bool *nodes_used = ted->nodes_used;
assert(node_idx < TED_MAX_NODES && nodes_used[node_idx]);
for (u16 i = 0; i < TED_MAX_NODES; ++i) {
if (nodes_used[i]) {
Node *node = &ted->nodes[i];
if (!node->tabs) {
if (node->split_a == node_idx || node->split_b == node_idx)
return i;
}
}
}
return -1;
}
// the root has depth 0, and a child node has 1 more than its parent's depth.
static u8 node_depth(Ted *ted, u16 node_idx) {
u8 depth = 0;
while (1) {
i32 parent = node_parent(ted, node_idx);
if (parent < 0) {
break;
} else {
node_idx = (u16)parent;
depth += 1;
}
}
return depth;
}
// join this node with its sibling
static void node_join(Ted *ted, Node *node) {
i32 parent_idx = node_parent(ted, (u16)(node - ted->nodes));
if (parent_idx >= 0) {
Node *parent = &ted->nodes[parent_idx];
Node *a = &ted->nodes[parent->split_a];
Node *b = &ted->nodes[parent->split_b];
if (a->tabs && b->tabs) {
if (ted->active_node == a || ted->active_node == b) {
ted->active_node = parent;
}
arr_foreach_ptr(a->tabs, u16, tab) {
arr_add(parent->tabs, *tab);
}
arr_foreach_ptr(b->tabs, u16, tab) {
arr_add(parent->tabs, *tab);
}
if (parent->tabs) {
if (node == a) {
parent->active_tab = a->active_tab;
} else {
parent->active_tab = (u16)arr_len(a->tabs) + b->active_tab;
}
node_free(a);
node_free(b);
ted->nodes_used[parent->split_a] = false;
ted->nodes_used[parent->split_b] = false;
}
}
}
}
static void node_close(Ted *ted, u16 node_idx) {
ted->dragging_tab_node = NULL;
ted->resizing_split = NULL;
assert(node_idx < TED_MAX_NODES);
assert(ted->nodes_used[node_idx]);
i32 parent_idx = node_parent(ted, node_idx);
ted->nodes_used[node_idx] = false;
Node *node = &ted->nodes[node_idx];
bool was_active = ted->active_node == node;
// delete all associated buffers
arr_foreach_ptr(node->tabs, u16, tab) {
u16 buffer_index = *tab;
ted_delete_buffer(ted, buffer_index);
}
node_free(node);
if (parent_idx < 0) {
// no parent; this must be the root node
ted->active_node = NULL;
} else {
// turn parent from split node into tab node
Node *parent = &ted->nodes[parent_idx];
assert(!parent->tabs);
u16 other_side;
if (node_idx == parent->split_a) {
other_side = parent->split_b;
} else {
assert(node_idx == parent->split_b);
other_side = parent->split_a;
}
// replace parent with other side of split
*parent = ted->nodes[other_side];
ted->nodes_used[other_side] = false;
if (was_active) {
Node *new_active_node = parent;
// make sure we don't set the active node to a split
while (!new_active_node->tabs)
new_active_node = &ted->nodes[new_active_node->split_a];
ted_node_switch(ted, new_active_node);
}
}
}
// close tab, WITHOUT checking for unsaved changes!
// returns true if the node is still open
static bool node_tab_close(Ted *ted, Node *node, u16 index) {
ted->dragging_tab_node = NULL;
u16 ntabs = (u16)arr_len(node->tabs);
assert(index < ntabs);
if (ntabs == 1) {
// only 1 tab left, just close the node
node_close(ted, (u16)(node - ted->nodes));
return false;
} else {
bool was_active = ted->active_node == node; // ted->active_node will be set to NULL when the active buffer is deleted.
u16 buffer_index = node->tabs[index];
// remove tab from array
arr_remove(node->tabs, index);
ted_delete_buffer(ted, buffer_index);
ntabs = (u16)arr_len(node->tabs); // update ntabs
assert(ntabs);
// fix active_tab
if (index < node->active_tab)
--node->active_tab;
node->active_tab = clamp_u16(node->active_tab, 0, ntabs - 1);
if (was_active) {
// fix active buffer if necessary
ted_switch_to_buffer(ted, &ted->buffers[node->tabs[node->active_tab]]);
}
return true;
}
}
static void node_frame(Ted *ted, Node *node, Rect r) {
Settings const *settings = &ted->settings;
if (node->tabs) {
bool is_active = node == ted->active_node;
u32 const *colors = settings->colors;
Font *font = ted->font;
float const border_thickness = settings->border_thickness;
float tab_bar_height = 20;
Rect tab_bar_rect = r;
tab_bar_rect.size.y = tab_bar_height;
{ // tab bar
u16 ntabs = (u16)arr_len(node->tabs);
float tab_width = r.size.x / ntabs;
if (!ted->menu) {
for (u16 c = 0; c < ted->nmouse_clicks[SDL_BUTTON_LEFT]; ++c) {
v2 click = ted->mouse_clicks[SDL_BUTTON_LEFT][c];
if (rect_contains_point(tab_bar_rect, click)) {
// click on tab to switch to it
u16 tab_index = (u16)((click.x - r.pos.x) / tab_width);
if (tab_index < arr_len(node->tabs)) {
ted->active_node = node;
node_switch_to_tab(ted, node, tab_index);
ted->dragging_tab_node = node;
ted->dragging_tab_idx = tab_index;
ted->dragging_tab_origin = click;
}
}
}
if (ted->dragging_tab_node) {
// check if user dropped tab here
for (u16 c = 0; c < ted->nmouse_releases[SDL_BUTTON_LEFT]; ++c) {
v2 release = ted->mouse_releases[SDL_BUTTON_LEFT][c];
if (rect_contains_point(tab_bar_rect, release)) {
u16 tab_index = (u16)roundf((release.x - r.pos.x) / tab_width);
if (tab_index <= arr_len(node->tabs)) {
Node *drag_node = ted->dragging_tab_node;
u16 drag_index = ted->dragging_tab_idx;
u16 tab = drag_node->tabs[drag_index];
// remove the old tab
arr_remove(drag_node->tabs, drag_index);
if (node == drag_node) {
// fix index if we move tab from one place to another in the same node
if (tab_index > drag_index)
--tab_index;
}
// insert the tab here
arr_insert(node->tabs, tab_index, tab);
if (arr_len(drag_node->tabs) == 0) {
// removed the last tab from a node; close it
node_close(ted, (u16)(drag_node - ted->nodes));
} else {
// make sure active tab is valid
drag_node->active_tab = clamp_u16(drag_node->active_tab, 0, (u16)arr_len(drag_node->tabs) - 1);
}
ted->dragging_tab_node = NULL; // stop dragging
// switch to this buffer
ted_switch_to_buffer(ted, &ted->buffers[tab]);
}
}
}
}
for (u16 c = 0; c < ted->nmouse_clicks[SDL_BUTTON_MIDDLE]; ++c) {
// middle-click to close tab
v2 click = ted->mouse_clicks[SDL_BUTTON_MIDDLE][c];
if (rect_contains_point(tab_bar_rect, click)) {
u16 tab_index = (u16)((click.x - r.pos.x) / tab_width);
if (tab_index < arr_len(node->tabs)) {
u16 buffer_idx = node->tabs[tab_index];
TextBuffer *buffer = &ted->buffers[buffer_idx];
// close that tab
if (buffer_unsaved_changes(buffer)) {
// make sure unsaved changes dialog is opened
ted_switch_to_buffer(ted, buffer);
command_execute(ted, CMD_TAB_CLOSE, 1);
} else {
if (!node_tab_close(ted, node, tab_index)) {
return; // node closed
}
}
ntabs = (u16)arr_len(node->tabs);
tab_width = r.size.x / ntabs;
}
}
}
}
TextRenderState text_state = text_render_state_default;
for (u16 i = 0; i < ntabs; ++i) {
TextBuffer *buffer = &ted->buffers[node->tabs[i]];
char tab_title[256];
char const *path = buffer_get_filename(buffer);
char const *filename = path ? path_filename(path) : TED_UNTITLED;
Rect tab_rect = rect(V2(r.pos.x + tab_width * i, r.pos.y), V2(tab_width, tab_bar_height));
if (node == ted->dragging_tab_node && i == ted->dragging_tab_idx) {
// make tab follow mouse
tab_rect.pos = v2_add(tab_rect.pos, v2_sub(ted->mouse_pos, ted->dragging_tab_origin));
}
// tab border
gl_geometry_rect_border(tab_rect, border_thickness, colors[COLOR_BORDER]);
// tab title
{
if (buffer_unsaved_changes(buffer))
strbuf_printf(tab_title, "*%s*", filename);
else if (buffer->view_only)
strbuf_printf(tab_title, "VIEW %s", filename);
else
strbuf_printf(tab_title, "%s", filename);
}
text_state.max_x = rect_x2(tab_rect);
rgba_u32_to_floats(colors[COLOR_TEXT], text_state.color);
text_state.x = tab_rect.pos.x;
text_state.y = tab_rect.pos.y;
text_utf8_with_state(font, &text_state, tab_title);
if (i == node->active_tab) {
// highlight active tab
gl_geometry_rect(tab_rect, colors[is_active ? COLOR_ACTIVE_TAB_HL : COLOR_SELECTED_TAB_HL]);
// set window title to active tab's title
strbuf_printf(ted->window_title, "ted %s", tab_title);
}
}
gl_geometry_draw();
text_render(font);
}
u16 buffer_index = node->tabs[node->active_tab];
TextBuffer *buffer = &ted->buffers[buffer_index];
assert(ted->buffers_used[buffer_index]);
Rect buffer_rect = rect_translate(r, V2(0, tab_bar_height));
buffer_rect.size.y -= tab_bar_height;
buffer_render(buffer, buffer_rect);
} else {
float padding = settings->padding;
// this node is a split
Node *a = &ted->nodes[node->split_a];
Node *b = &ted->nodes[node->split_b];
Rect r1 = r, r2 = r;
SDL_Cursor *resize_cursor = node->split_vertical ? ted->cursor_resize_v : ted->cursor_resize_h;
if (node == ted->resizing_split) {
if (!(ted->mouse_state & SDL_BUTTON_LMASK)) {
// let go of mouse
ted->resizing_split = NULL;
} else {
// resize the split
float mouse_coord = node->split_vertical ? ted->mouse_pos.y : ted->mouse_pos.x;
float rect_coord1 = (node->split_vertical ? rect_y1 : rect_x1)(r);
float rect_coord2 = (node->split_vertical ? rect_y2 : rect_x2)(r);
// make sure the split doesn't make one of the sides too small
float min_split = 50.0f / (node->split_vertical ? r.size.y : r.size.x);
node->split_pos = clampf(normf(mouse_coord, rect_coord1, rect_coord2), min_split, 1-min_split);
}
}
Rect r_between; // rectangle of space between r1 and r2
if (node->split_vertical) {
float split_pos = r.size.y * node->split_pos;
r1.size.y = split_pos - padding;
r2.pos.y += split_pos + padding;
r2.size.y = r.size.y - split_pos - padding;
r_between = rect(V2(r.pos.x, r.pos.y + split_pos - padding), V2(r.size.x, 2 * padding));
} else {
float split_pos = r.size.x * node->split_pos;
r1.size.x = split_pos - padding;
r2.pos.x += split_pos + padding;
r2.size.x = r.size.x - split_pos - padding;
r_between = rect(V2(r.pos.x + split_pos - padding, r.pos.y), V2(2 * padding, r.size.y));
}
if (rect_contains_point(r_between, ted->mouse_pos)) {
ted->cursor = resize_cursor;
}
for (u32 i = 0; i < ted->nmouse_clicks[SDL_BUTTON_LEFT]; ++i) {
if (rect_contains_point(r_between, ted->mouse_clicks[SDL_BUTTON_LEFT][i])) {
ted->resizing_split = node;
}
}
node_frame(ted, a, r1);
node_frame(ted, b, r2);
}
}
static void node_split(Ted *ted, Node *node, bool vertical) {
if (node_depth(ted, (u16)(node - ted->nodes)) >= 4) return; // prevent splitting too deep
if (arr_len(node->tabs) > 1) { // need at least 2 tabs to split
i32 left_idx = ted_new_node(ted);
i32 right_idx = ted_new_node(ted);
if (left_idx >= 0 && right_idx >= 0) {
Node *left = &ted->nodes[left_idx];
Node *right = &ted->nodes[right_idx];
u16 active_tab = node->active_tab;
// put active tab on the right
arr_add(right->tabs, node->tabs[active_tab]);
for (u32 i = 0; i < arr_len(node->tabs); ++i) {
if (i != active_tab) {
// put all other tabs on the left
arr_add(left->tabs, node->tabs[i]);
}
}
arr_clear(node->tabs);
node->split_a = (u16)left_idx;
node->split_b = (u16)right_idx;
node->split_vertical = vertical;
node->split_pos = 0.5f;
if (node == ted->active_node)
ted_node_switch(ted, &ted->nodes[right_idx]);
}
}
}
// swap to the other side of a split
static void node_split_swap(Ted *ted) {
assert(ted->active_node);
u16 active_node_idx = (u16)(ted->active_node - ted->nodes);
Node *parent = &ted->nodes[node_parent(ted, active_node_idx)];
if (parent) {
if (parent->split_a == active_node_idx) {
ted_node_switch(ted, &ted->nodes[parent->split_b]);
} else {
ted_node_switch(ted, &ted->nodes[parent->split_a]);
}
}
}
|