summaryrefslogtreecommitdiff
path: root/util.c
diff options
context:
space:
mode:
Diffstat (limited to 'util.c')
-rw-r--r--util.c803
1 files changed, 803 insertions, 0 deletions
diff --git a/util.c b/util.c
index 3da5f30..39d1e39 100644
--- a/util.c
+++ b/util.c
@@ -425,3 +425,806 @@ bool copy_file(const char *src, const char *dst) {
}
+#ifdef MATH_GL
+#undef MATH_GL
+#define MATH_GL 1
+#endif
+
+float degrees(float r) {
+ return r * (180.0f / PIf);
+}
+float radians(float r) {
+ return r * (PIf / 180.f);
+}
+
+// map x from the interval [0, 1] to the interval [a, b]. does NOT clamp.
+float lerpf(float x, float a, float b) {
+ return x * (b-a) + a;
+}
+
+// opposite of lerp; map x from the interval [a, b] to the interval [0, 1]. does NOT clamp.
+float normf(float x, float a, float b) {
+ return (x-a) / (b-a);
+}
+
+float clampf(float x, float a, float b) {
+ if (x < a) return a;
+ if (x > b) return b;
+ return x;
+}
+
+int clampi(int x, int a, int b) {
+ if (x < a) return a;
+ if (x > b) return b;
+ return x;
+}
+
+i16 clamp_i16(i16 x, i16 a, i16 b) {
+ if (x < a) return a;
+ if (x > b) return b;
+ return x;
+}
+
+u16 clamp_u16(u16 x, u16 a, u16 b) {
+ if (x < a) return a;
+ if (x > b) return b;
+ return x;
+}
+
+i32 clamp_i32(i32 x, i32 a, i32 b) {
+ if (x < a) return a;
+ if (x > b) return b;
+ return x;
+}
+
+u32 clamp_u32(u32 x, u32 a, u32 b) {
+ if (x < a) return a;
+ if (x > b) return b;
+ return x;
+}
+
+u8 ndigits_u64(u64 x) {
+ u8 ndigits = 1;
+ while (x > 9) {
+ x /= 10;
+ ++ndigits;
+ }
+ return ndigits;
+}
+
+// remap x from the interval [from_a, from_b] to the interval [to_a, to_b], NOT clamping if x is outside the "from" interval.
+float remapf(float x, float from_a, float from_b, float to_a, float to_b) {
+ float pos = (x - from_a) / (from_b - from_a);
+ return lerpf(pos, to_a, to_b);
+}
+
+float minf(float a, float b) {
+ return a < b ? a : b;
+}
+
+float maxf(float a, float b) {
+ return a > b ? a : b;
+}
+
+double maxd(double a, double b) {
+ return a > b ? a : b;
+}
+
+double mind(double a, double b) {
+ return a < b ? a : b;
+}
+
+u32 min_u32(u32 a, u32 b) {
+ return a < b ? a : b;
+}
+
+u32 max_u32(u32 a, u32 b) {
+ return a > b ? a : b;
+}
+
+// set *a to the minimum of *a and *b, and *b to the maximum
+void sort2_u32(u32 *a, u32 *b) {
+ u32 x = *a, y = *b;
+ if (x > y) {
+ *a = y;
+ *b = x;
+ }
+}
+
+i32 min_i32(i32 a, i32 b) {
+ return a < b ? a : b;
+}
+
+i32 max_i32(i32 a, i32 b) {
+ return a > b ? a : b;
+}
+
+u64 min_u64(u64 a, u64 b) {
+ return a < b ? a : b;
+}
+
+u64 max_u64(u64 a, u64 b) {
+ return a > b ? a : b;
+}
+
+i64 min_i64(i64 a, i64 b) {
+ return a < b ? a : b;
+}
+
+i64 max_i64(i64 a, i64 b) {
+ return a > b ? a : b;
+}
+
+i64 mod_i64(i64 a, i64 b) {
+ i64 ret = a % b;
+ if (ret < 0) ret += b;
+ return ret;
+}
+i32 mod_i32(i32 a, i32 b) {
+ i32 ret = a % b;
+ if (ret < 0) ret += b;
+ return ret;
+}
+
+i64 abs_i64(i64 x) {
+ return x < 0 ? -x : +x;
+}
+
+i64 sgn_i64(i64 x) {
+ if (x < 0) return -1;
+ if (x > 0) return +1;
+ return 0;
+}
+
+float sgnf(float x) {
+ if (x < 0) return -1;
+ if (x > 0) return +1;
+ return 0;
+}
+
+float smoothstepf(float x) {
+ if (x <= 0) return 0;
+ if (x >= 1) return 1;
+ return x * x * (3 - 2 * x);
+}
+
+float randf(void) {
+ return (float)rand() / (float)((ulong)RAND_MAX + 1);
+}
+
+float rand_gauss(void) {
+ // https://en.wikipedia.org/wiki/Normal_distribution#Generating_values_from_normal_distribution
+ float U, V;
+ do
+ U = randf(), V = randf();
+ while (U == 0 || V == 0);
+ return sqrtf(-2 * logf(U)) * cosf(TAUf * V);
+}
+
+u32 rand_u32(void) {
+ return ((u32)rand() & 0xfff)
+ | ((u32)rand() & 0xfff) << 12
+ | ((u32)rand() & 0xff) << 24;
+}
+
+float rand_uniform(float from, float to) {
+ return lerpf(randf(), from, to);
+}
+
+float sigmoidf(float x) {
+ return 1.0f / (1.0f + expf(-x));
+}
+
+// returns ⌈x/y⌉ (x/y rounded up)
+i32 ceildivi32(i32 x, i32 y) {
+ if (y < 0) {
+ // negating both operands doesn't change the answer
+ x = -x;
+ y = -y;
+ }
+ if (x < 0) {
+ // truncation is the same as ceiling for negative numbers
+ return x / y;
+ } else {
+ return (x + (y-1)) / y;
+ }
+}
+
+v2 V2(float x, float y) {
+ v2 v;
+ v.x = x;
+ v.y = y;
+ return v;
+}
+
+v2 v2_add(v2 a, v2 b) {
+ return V2(a.x + b.x, a.y + b.y);
+}
+
+v2 v2_add_const(v2 a, float c) {
+ return V2(a.x + c, a.y + c);
+}
+
+v2 v2_sub(v2 a, v2 b) {
+ return V2(a.x - b.x, a.y - b.y);
+}
+
+v2 v2_scale(v2 v, float s) {
+ return V2(v.x * s, v.y * s);
+}
+
+v2 v2_mul(v2 a, v2 b) {
+ return V2(a.x * b.x, a.y * b.y);
+}
+
+v2 v2_clamp(v2 x, v2 a, v2 b) {
+ return V2(clampf(x.x, a.x, b.x), clampf(x.y, a.y, b.y));
+}
+
+float v2_dot(v2 a, v2 b) {
+ return a.x * b.x + a.y * b.y;
+}
+
+float v2_len(v2 v) {
+ return sqrtf(v2_dot(v, v));
+}
+
+v2 v2_lerp(float x, v2 a, v2 b) {
+ return V2(lerpf(x, a.x, b.x), lerpf(x, a.y, b.y));
+}
+
+// rotate v theta radians counterclockwise
+v2 v2_rotate(v2 v, float theta) {
+ float c = cosf(theta), s = sinf(theta);
+ return V2(
+ c * v.x - s * v.y,
+ s * v.x + c * v.y
+ );
+}
+
+v2 v2_normalize(v2 v) {
+ float len = v2_len(v);
+ float mul = len == 0.0f ? 1.0f : 1.0f/len;
+ return v2_scale(v, mul);
+}
+
+float v2_dist(v2 a, v2 b) {
+ return v2_len(v2_sub(a, b));
+}
+
+float v2_dist_squared(v2 a, v2 b) {
+ v2 diff = v2_sub(a, b);
+ return v2_dot(diff, diff);
+}
+
+void v2_print(v2 v) {
+ printf("(%f, %f)\n", v.x, v.y);
+}
+
+v2 v2_rand_unit(void) {
+ float theta = rand_uniform(0, TAUf);
+ return V2(cosf(theta), sinf(theta));
+}
+
+v2 v2_polar(float r, float theta) {
+ return V2(r * cosf(theta), r * sinf(theta));
+}
+
+v3 V3(float x, float y, float z) {
+ v3 v;
+ v.x = x;
+ v.y = y;
+ v.z = z;
+ return v;
+}
+
+v3 v3_from_v2(v2 v) {
+ return V3(v.x, v.y, 0);
+}
+
+v3 v3_add(v3 a, v3 b) {
+ return V3(a.x + b.x, a.y + b.y, a.z + b.z);
+}
+
+v3 v3_sub(v3 a, v3 b) {
+ return V3(a.x - b.x, a.y - b.y, a.z - b.z);
+}
+
+v3 v3_scale(v3 v, float s) {
+ return V3(v.x * s, v.y * s, v.z * s);
+}
+
+v3 v3_lerp(float x, v3 a, v3 b) {
+ return V3(lerpf(x, a.x, b.x), lerpf(x, a.y, b.y), lerpf(x, a.z, b.z));
+}
+
+float v3_dot(v3 u, v3 v) {
+ return u.x*v.x + u.y*v.y + u.z*v.z;
+}
+
+v3 v3_cross(v3 u, v3 v) {
+ v3 prod = V3(u.y*v.z - u.z*v.y, u.z*v.x - u.x*v.z, u.x*v.y - u.y*v.x);
+ return prod;
+}
+
+float v3_len(v3 v) {
+ return sqrtf(v3_dot(v, v));
+}
+
+float v3_dist(v3 a, v3 b) {
+ return v3_len(v3_sub(a, b));
+}
+
+float v3_dist_squared(v3 a, v3 b) {
+ v3 diff = v3_sub(a, b);
+ return v3_dot(diff, diff);
+}
+
+v3 v3_normalize(v3 v) {
+ float len = v3_len(v);
+ float mul = len == 0.0f ? 1.0f : 1.0f/len;
+ return v3_scale(v, mul);
+}
+
+v2 v3_xy(v3 v) {
+ return V2(v.x, v.y);
+}
+
+// a point on a unit sphere
+v3 v3_on_sphere(float yaw, float pitch) {
+ return V3(cosf(yaw) * cosf(pitch), sinf(pitch), sinf(yaw) * cosf(pitch));
+}
+
+void v3_print(v3 v) {
+ printf("(%f, %f, %f)\n", v.x, v.y, v.z);
+}
+
+v3 v3_rand(void) {
+ return V3(randf(), randf(), randf());
+}
+
+v3 v3_rand_unit(void) {
+ /*
+ monte carlo method
+ keep generating random points in cube of radius 1 (width 2) centered at origin,
+ until you get a point in the unit sphere, then extend it to find the point lying
+ on the sphere.
+ */
+ while (1) {
+ v3 v = V3(rand_uniform(-1.0f, +1.0f), rand_uniform(-1.0f, +1.0f), rand_uniform(-1.0f, +1.0f));
+ float dist_squared_to_origin = v3_dot(v, v);
+ if (dist_squared_to_origin <= 1 && dist_squared_to_origin != 0.0f) {
+ return v3_scale(v, 1.0f / sqrtf(dist_squared_to_origin));
+ }
+ }
+ return V3(0, 0, 0);
+}
+
+v4 V4(float x, float y, float z, float w) {
+ v4 v;
+ v.x = x;
+ v.y = y;
+ v.z = z;
+ v.w = w;
+ return v;
+}
+
+v4 v4_add(v4 a, v4 b) {
+ return V4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
+}
+
+v4 v4_sub(v4 a, v4 b) {
+ return V4(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
+}
+
+v4 v4_scale(v4 v, float s) {
+ return V4(v.x * s, v.y * s, v.z * s, v.w * s);
+}
+
+v4 v4_scale_xyz(v4 v, float s) {
+ return V4(v.x * s, v.y * s, v.z * s, v.w);
+}
+
+v4 v4_lerp(float x, v4 a, v4 b) {
+ return V4(lerpf(x, a.x, b.x), lerpf(x, a.y, b.y), lerpf(x, a.z, b.z), lerpf(x, a.w, b.w));
+}
+
+float v4_dot(v4 u, v4 v) {
+ return u.x*v.x + u.y*v.y + u.z*v.z + u.w*v.w;
+}
+
+// create a new vector by multiplying the respective components of u and v
+v4 v4_mul(v4 u, v4 v) {
+ return V4(u.x * v.x, u.y * v.y, u.z * v.z, u.w * v.w);
+}
+
+float v4_len(v4 v) {
+ return sqrtf(v4_dot(v, v));
+}
+
+v4 v4_normalize(v4 v) {
+ float len = v4_len(v);
+ float mul = len == 0.0f ? 1.0f : 1.0f/len;
+ return v4_scale(v, mul);
+}
+
+v3 v4_xyz(v4 v) {
+ return V3(v.x, v.y, v.z);
+}
+
+v4 v4_rand(void) {
+ return V4(randf(), randf(), randf(), randf());
+}
+
+void v4_print(v4 v) {
+ printf("(%f, %f, %f, %f)\n", v.x, v.y, v.z, v.w);
+}
+
+
+v2d V2D(double x, double y) {
+ v2d v;
+ v.x = x;
+ v.y = y;
+ return v;
+}
+
+void m4_print(m4 m) {
+ int i;
+ for (i = 0; i < 4; ++i)
+ printf("[ %f %f %f %f ]\n", m.e[i], m.e[i+4], m.e[i+8], m.e[i+12]);
+ printf("\n");
+}
+
+m4 M4(
+ float a, float b, float c, float d,
+ float e, float f, float g, float h,
+ float i, float j, float k, float l,
+ float m, float n, float o, float p) {
+ m4 ret;
+ float *x = ret.e;
+ x[0] = a; x[4] = b; x[ 8] = c; x[12] = d;
+ x[1] = e; x[5] = f; x[ 9] = g; x[13] = h;
+ x[2] = i; x[6] = j; x[10] = k; x[14] = l;
+ x[3] = m; x[7] = n; x[11] = o; x[15] = p;
+ return ret;
+}
+
+// see https://en.wikipedia.org/wiki/Rotation_matrix#General_rotations
+m4 m4_yaw(float yaw) {
+ float c = cosf(yaw), s = sinf(yaw);
+ return M4(
+ c, 0, -s, 0,
+ 0, 1, 0, 0,
+ s, 0, c, 0,
+ 0, 0, 0, 1
+ );
+}
+
+m4 m4_pitch(float pitch) {
+ float c = cosf(pitch), s = sinf(pitch);
+ return M4(
+ 1, 0, 0, 0,
+ 0, c, -s, 0,
+ 0, s, c, 0,
+ 0, 0, 0, 1
+ );
+}
+
+// https://en.wikipedia.org/wiki/Translation_(geometry)
+m4 m4_translate(v3 t) {
+ return M4(
+ 1, 0, 0, t.x,
+ 0, 1, 0, t.y,
+ 0, 0, 1, t.z,
+ 0, 0, 0, 1
+ );
+}
+
+// multiply m by [v.x, v.y, v.z, 1]
+v3 m4_mul_v3(m4 m, v3 v) {
+ return v3_add(v3_scale(V3(m.e[0], m.e[1], m.e[2]), v.x), v3_add(v3_scale(V3(m.e[4], m.e[5], m.e[6]), v.y),
+ v3_add(v3_scale(V3(m.e[8], m.e[9], m.e[10]), v.z), V3(m.e[12], m.e[13], m.e[14]))));
+}
+
+/*
+4x4 perspective matrix.
+fov - field of view in radians, aspect - width:height aspect ratio, z_near/z_far - clipping planes
+math stolen from gluPerspective (https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml)
+*/
+m4 m4_perspective(float fov, float aspect, float z_near, float z_far) {
+ float f = 1.0f / tanf(fov / 2.0f);
+ return M4(
+ f/aspect, 0, 0, 0,
+ 0, f, 0, 0,
+ 0, 0, (z_far+z_near) / (z_near-z_far), (2.0f*z_far*z_near) / (z_near-z_far),
+ 0, 0, -1, 0
+ );
+}
+
+// windows.h defines near and far, so let's not use those
+m4 m4_ortho(float left, float right, float bottom, float top, float near_, float far_) {
+ float tx = -(right + left)/(right - left);
+ float ty = -(top + bottom)/(top - bottom);
+ float tz = -(far_ + near_)/(far_ - near_);
+ return M4(
+ 2.0f / (right - left), 0, 0, tx,
+ 0, 2.0f / (top - bottom), 0, ty,
+ 0, 0, -2.0f / (far_ - near_), tz,
+ 0, 0, 0, 1
+ );
+}
+
+
+m4 m4_mul(m4 a, m4 b) {
+ m4 prod = {0};
+ int i, j;
+ float *x = prod.e;
+ for (i = 0; i < 4; ++i) {
+ for (j = 0; j < 4; ++j, ++x) {
+ float *as = &a.e[j];
+ float *bs = &b.e[4*i];
+ *x = as[0]*bs[0] + as[4]*bs[1] + as[8]*bs[2] + as[12]*bs[3];
+ }
+ }
+ return prod;
+}
+
+m4 m4_inv(m4 mat) {
+ m4 ret;
+ float *inv = ret.e;
+ float *m = mat.e;
+
+ inv[0] = m[5] * m[10] * m[15] - m[5] * m[11] * m[14] - m[9] * m[6] * m[15] + m[9] * m[7] * m[14] + m[13] * m[6] * m[11] - m[13] * m[7] * m[10];
+ inv[4] = -m[4] * m[10] * m[15] + m[4] * m[11] * m[14] + m[8] * m[6] * m[15] - m[8] * m[7] * m[14] - m[12] * m[6] * m[11] + m[12] * m[7] * m[10];
+ inv[8] = m[4] * m[9] * m[15] - m[4] * m[11] * m[13] - m[8] * m[5] * m[15] + m[8] * m[7] * m[13] + m[12] * m[5] * m[11] - m[12] * m[7] * m[9];
+ inv[12] = -m[4] * m[9] * m[14] + m[4] * m[10] * m[13] + m[8] * m[5] * m[14] - m[8] * m[6] * m[13] - m[12] * m[5] * m[10] + m[12] * m[6] * m[9];
+ inv[1] = -m[1] * m[10] * m[15] + m[1] * m[11] * m[14] + m[9] * m[2] * m[15] - m[9] * m[3] * m[14] - m[13] * m[2] * m[11] + m[13] * m[3] * m[10];
+ inv[5] = m[0] * m[10] * m[15] - m[0] * m[11] * m[14] - m[8] * m[2] * m[15] + m[8] * m[3] * m[14] + m[12] * m[2] * m[11] - m[12] * m[3] * m[10];
+ inv[9] = -m[0] * m[9] * m[15] + m[0] * m[11] * m[13] + m[8] * m[1] * m[15] - m[8] * m[3] * m[13] - m[12] * m[1] * m[11] + m[12] * m[3] * m[9];
+ inv[13] = m[0] * m[9] * m[14] - m[0] * m[10] * m[13] - m[8] * m[1] * m[14] + m[8] * m[2] * m[13] + m[12] * m[1] * m[10] - m[12] * m[2] * m[9];
+ inv[2] = m[1] * m[6] * m[15] - m[1] * m[7] * m[14] - m[5] * m[2] * m[15] + m[5] * m[3] * m[14] + m[13] * m[2] * m[7] - m[13] * m[3] * m[6];
+ inv[6] = -m[0] * m[6] * m[15] + m[0] * m[7] * m[14] + m[4] * m[2] * m[15] - m[4] * m[3] * m[14] - m[12] * m[2] * m[7] + m[12] * m[3] * m[6];
+ inv[10] = m[0] * m[5] * m[15] - m[0] * m[7] * m[13] - m[4] * m[1] * m[15] + m[4] * m[3] * m[13] + m[12] * m[1] * m[7] - m[12] * m[3] * m[5];
+ inv[14] = -m[0] * m[5] * m[14] + m[0] * m[6] * m[13] + m[4] * m[1] * m[14] - m[4] * m[2] * m[13] - m[12] * m[1] * m[6] + m[12] * m[2] * m[5];
+ inv[3] = -m[1] * m[6] * m[11] + m[1] * m[7] * m[10] + m[5] * m[2] * m[11] - m[5] * m[3] * m[10] - m[9] * m[2] * m[7] + m[9] * m[3] * m[6];
+ inv[7] = m[0] * m[6] * m[11] - m[0] * m[7] * m[10] - m[4] * m[2] * m[11] + m[4] * m[3] * m[10] + m[8] * m[2] * m[7] - m[8] * m[3] * m[6];
+ inv[11] = -m[0] * m[5] * m[11] + m[0] * m[7] * m[9] + m[4] * m[1] * m[11] - m[4] * m[3] * m[9] - m[8] * m[1] * m[7] + m[8] * m[3] * m[5];
+ inv[15] = m[0] * m[5] * m[10] - m[0] * m[6] * m[9] - m[4] * m[1] * m[10] + m[4] * m[2] * m[9] + m[8] * m[1] * m[6] - m[8] * m[2] * m[5];
+
+ float det = m[0] * inv[0] + m[1] * inv[4] + m[2] * inv[8] + m[3] * inv[12];
+
+ if (det == 0) {
+ memset(inv, 0, sizeof *inv);
+ } else {
+ det = 1 / det;
+
+ for (int i = 0; i < 16; i++)
+ inv[i] *= det;
+ }
+
+ return ret;
+}
+
+v2i V2I(int x, int y) {
+ v2i v;
+ v.x = x;
+ v.y = y;
+ return v;
+}
+
+void rgba_u32_to_floats(u32 rgba, float floats[4]) {
+ floats[0] = (float)((rgba >> 24) & 0xFF) / 255.f;
+ floats[1] = (float)((rgba >> 16) & 0xFF) / 255.f;
+ floats[2] = (float)((rgba >> 8) & 0xFF) / 255.f;
+ floats[3] = (float)((rgba >> 0) & 0xFF) / 255.f;
+}
+
+v4 rgba_u32_to_v4(u32 rgba) {
+ float c[4];
+ rgba_u32_to_floats(rgba, c);
+ return V4(c[0], c[1], c[2], c[3]);
+}
+
+u32 rgba_v4_to_u32(v4 color) {
+ return (u32)(color.x * 255) << 24
+ | (u32)(color.y * 255) << 16
+ | (u32)(color.z * 255) << 8
+ | (u32)(color.w * 255);
+}
+
+// returns average of red green and blue components of color
+float rgba_brightness(u32 color) {
+ u8 r = (u8)(color >> 24), g = (u8)(color >> 16), b = (u8)(color >> 8);
+ return ((float)r+(float)g+(float)b) * (1.0f / 3);
+}
+
+bool rect_contains_point_v2(v2 pos, v2 size, v2 point) {
+ float x1 = pos.x, y1 = pos.y, x2 = pos.x + size.x, y2 = pos.y + size.y,
+ x = point.x, y = point.y;
+ return x >= x1 && x < x2 && y >= y1 && y < y2;
+}
+
+bool centered_rect_contains_point(v2 center, v2 size, v2 point) {
+ return rect_contains_point_v2(v2_sub(center, v2_scale(size, 0.5f)), size, point);
+}
+
+Rect rect(v2 pos, v2 size) {
+ Rect r;
+ r.pos = pos;
+ r.size = size;
+ return r;
+}
+
+Rect rect_endpoints(v2 e1, v2 e2) {
+ Rect r;
+ r.pos = e1;
+ r.size = v2_sub(e2, e1);
+ return r;
+}
+
+Rect rect4(float x1, float y1, float x2, float y2) {
+ assert(x2 >= x1);
+ assert(y2 >= y1);
+ return rect(V2(x1,y1), V2(x2-x1, y2-y1));
+}
+
+Rect rect_xywh(float x, float y, float w, float h) {
+ assert(w >= 0);
+ assert(h >= 0);
+ return rect(V2(x, y), V2(w, h));
+}
+
+Rect rect_centered(v2 center, v2 size) {
+ Rect r;
+ r.pos = v2_sub(center, v2_scale(size, 0.5f));
+ r.size = size;
+ return r;
+}
+
+v2 rect_center(Rect r) {
+ return v2_add(r.pos, v2_scale(r.size, 0.5f));
+}
+
+bool rect_contains_point(Rect r, v2 point) {
+ return rect_contains_point_v2(r.pos, r.size, point);
+}
+
+Rect rect_translate(Rect r, v2 by) {
+ return rect(v2_add(r.pos, by), r.size);
+}
+
+float rect_x1(Rect r) { return r.pos.x; }
+float rect_y1(Rect r) { return r.pos.y; }
+float rect_x2(Rect r) { return r.pos.x + r.size.x; }
+float rect_y2(Rect r) { return r.pos.y + r.size.y; }
+float rect_xmid(Rect r) { return r.pos.x + r.size.x * 0.5f; }
+float rect_ymid(Rect r) { return r.pos.y + r.size.y * 0.5f; }
+
+void rect_coords(Rect r, float *x1, float *y1, float *x2, float *y2) {
+ *x1 = r.pos.x;
+ *y1 = r.pos.y;
+ *x2 = r.pos.x + r.size.x;
+ *y2 = r.pos.y + r.size.y;
+}
+
+void rect_print(Rect r) {
+ printf("Position: (%f, %f), Size: (%f, %f)\n", r.pos.x, r.pos.y, r.size.x, r.size.y);
+}
+
+
+float rects_intersect(Rect r1, Rect r2) {
+ if (r1.pos.x >= r2.pos.x + r2.size.x) return false; // r1 is to the right of r2
+ if (r2.pos.x >= r1.pos.x + r1.size.x) return false; // r2 is to the right of r1
+ if (r1.pos.y >= r2.pos.y + r2.size.y) return false; // r1 is above r2
+ if (r2.pos.y >= r1.pos.y + r1.size.y) return false; // r2 is above r1
+ return true;
+}
+
+// returns whether or not there is any of the clipped rectangle left
+bool rect_clip_to_rect(Rect *clipped, Rect clipper) {
+ v2 start_pos = clipped->pos;
+ clipped->pos.x = maxf(clipped->pos.x, clipper.pos.x);
+ clipped->pos.y = maxf(clipped->pos.y, clipper.pos.y);
+ clipped->size = v2_add(clipped->size, v2_sub(start_pos, clipped->pos));
+
+ clipped->size.x = clampf(clipped->size.x, 0, clipper.pos.x + clipper.size.x - clipped->pos.x);
+ clipped->size.y = clampf(clipped->size.y, 0, clipper.pos.y + clipper.size.y - clipped->pos.y);
+ return clipped->size.x > 0 && clipped->size.y > 0;
+}
+
+// removes `amount` from all sides of r
+Rect rect_shrink(Rect r, float amount) {
+ r.pos.x += amount;
+ r.pos.y += amount;
+ r.size.x -= 2 * amount;
+ r.size.y -= 2 * amount;
+ r.size.x = maxf(r.size.x, 0);
+ r.size.y = maxf(r.size.y, 0);
+ return r;
+}
+
+// adds `amount` to all sides of r
+Rect rect_grow(Rect r, float amount) {
+ r.pos.x -= amount;
+ r.pos.y -= amount;
+ r.size.x += 2 * amount;
+ r.size.y += 2 * amount;
+ return r;
+}
+
+v4 color_rgba_to_hsva(v4 rgba) {
+ float R = rgba.x, G = rgba.y, B = rgba.z, A = rgba.w;
+ float M = maxf(R, maxf(G, B));
+ float m = minf(R, minf(G, B));
+ float C = M - m;
+ float H = 0;
+ if (C == 0)
+ H = 0;
+ else if (M == R)
+ H = fmodf((G - B) / C, 6);
+ else if (M == G)
+ H = (B - R) / C + 2;
+ else if (M == B)
+ H = (R - G) / C + 4;
+ H *= 60;
+ float V = M;
+ float S = V == 0 ? 0 : C / V;
+ return V4(H, S, V, A);
+}
+
+v4 color_hsva_to_rgba(v4 hsva) {
+ float H = hsva.x, S = hsva.y, V = hsva.z, A = hsva.w;
+ H /= 60;
+ float C = S * V;
+ float X = C * (1 - fabsf(fmodf(H, 2) - 1));
+ float R, G, B;
+ if (H <= 1)
+ R=C, G=X, B=0;
+ else if (H <= 2)
+ R=X, G=C, B=0;
+ else if (H <= 3)
+ R=0, G=C, B=X;
+ else if (H <= 4)
+ R=0, G=X, B=C;
+ else if (H <= 5)
+ R=X, G=0, B=C;
+ else
+ R=C, G=0, B=X;
+
+ float m = V-C;
+ R += m;
+ G += m;
+ B += m;
+ return V4(R, G, B, A);
+}
+
+u32 color_interpolate(float x, u32 color1, u32 color2) {
+ x = x * x * (3 - 2*x); // hermite interpolation
+
+ v4 c1 = rgba_u32_to_v4(color1), c2 = rgba_u32_to_v4(color2);
+ // to make it interpolate more nicely, convert to hsv, interpolate in that space, then convert back
+ c1 = color_rgba_to_hsva(c1);
+ c2 = color_rgba_to_hsva(c2);
+ // v_1/2 named differently to avoid shadowing
+ float h1 = c1.x, s1 = c1.y, v_1 = c1.z, a1 = c1.w;
+ float h2 = c2.x, s2 = c2.y, v_2 = c2.z, a2 = c2.w;
+
+ float s_out = lerpf(x, s1, s2);
+ float v_out = lerpf(x, v_1, v_2);
+ float a_out = lerpf(x, a1, a2);
+
+ float h_out;
+ // because hue is on a circle, we need to make sure we take the shorter route around the circle
+ if (fabsf(h1 - h2) < 180) {
+ h_out = lerpf(x, h1, h2);
+ } else if (h1 > h2) {
+ h_out = lerpf(x, h1, h2 + 360);
+ } else {
+ h_out = lerpf(x, h1 + 360, h2);
+ }
+ h_out = fmodf(h_out, 360);
+
+ v4 c_out = V4(h_out, s_out, v_out, a_out);
+ c_out = color_hsva_to_rgba(c_out);
+ return rgba_v4_to_u32(c_out);
+}