summaryrefslogtreecommitdiff
path: root/mandelbrot_explanation.html
diff options
context:
space:
mode:
Diffstat (limited to 'mandelbrot_explanation.html')
-rw-r--r--mandelbrot_explanation.html123
1 files changed, 61 insertions, 62 deletions
diff --git a/mandelbrot_explanation.html b/mandelbrot_explanation.html
index 961076c..36f7032 100644
--- a/mandelbrot_explanation.html
+++ b/mandelbrot_explanation.html
@@ -1,72 +1,71 @@
<html>
-<head>
-<script src="js/latexit.js"></script>
-<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">
-<link rel="stylesheet" href="css/style.css">
+ <head>
+ <script src="js/latexit.js"></script>
+ <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">
+ <link rel="stylesheet" href="css/style.css">
+ <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>
+ <title>Mandelbrot Set Explanation</title>
+ </head>
-<title>Mandelbrot Set Explanation</title>
-</head>
+ <body>
-<body>
+ <div id="navbar"></div>
+ <script src="navbar.js"></script>
-<h2>Explanation of the Mandelbrot Set</h2>
-<div id="header_links_div"></div>
-<script src="js/header_links.js"></script>
-<hr>
+ <h2>Explanation of the Mandelbrot Set</h2>
-Consider the function
-<div lang="latex">
-f_c(z) = z^2+c\\
-</div><br>
-Where z and c are complex numbers. Complex numbers are numbers in the form of
-<div lang="latex">
-\\
-ai+b\\
-$Where $i=\sqrt{-1}
-</div>
-<br>
-Now let's check if 0.5 is in the Mandelbrot Set. To do so, start at 0
-<div lang="latex">
-\\
-f_{0.5}(0) = 0^2 + 0.5 = 0.5\\
-f_{0.5}(0.5) = 0.5^2 + 0.5 = 0.75\\
-f_{0.5}(0.75) = 1.0625\\
-f_{0.5}(1.0625) = 1.62890625\\
-f_{0.5}(1.62890625) = 3.15333557\\
-</div>
-<br>
-It can be proven that if the function passes 2, it will go to infinity if you continually apply the function.
-Since this function has passed 2, 0.5 is not in the Mandelbrot Set. Compare this to 0.25.
+ Consider the function
+ <div lang="latex">
+ f_c(z) = z^2+c\\
+ </div><br>
+ Where z and c are complex numbers. Complex numbers are numbers in the form of
+ <div lang="latex">
+ \\
+ ai+b\\
+ $Where $i=\sqrt{-1}
+ </div>
+ <br>
+ Now let's check if 0.5 is in the Mandelbrot Set. To do so, start at 0
+ <div lang="latex">
+ \\
+ f_{0.5}(0) = 0^2 + 0.5 = 0.5\\
+ f_{0.5}(0.5) = 0.5^2 + 0.5 = 0.75\\
+ f_{0.5}(0.75) = 1.0625\\
+ f_{0.5}(1.0625) = 1.62890625\\
+ f_{0.5}(1.62890625) = 3.15333557\\
+ </div>
+ <br>
+ Since this function has passed 2, 0.5 is not in the Mandelbrot Set. Compare this to 0.25.
-<div lang="latex">
-\\
-f_{0.25}(0) = 0^2+0.25 = 0.25\\
-f_{0.25}(0.25) = 0.3125\\
-f_{0.25}(0.3125) = 0.34765625\\
-f_{0.25}(0.34765625) = 0.370864868\\
-f_{0.25}(0.370864868) = 0.38754075\\
-f_{0.25}(0.38754075) = 0.400187833\\
-f_{0.25}(0.400187833) = 0.410150302\\
-f_{0.25}(0.410150) = 0.418223\\
-f_{0.25}(0.418223) = 0.424911\\
-f_{0.25}(0.424911) = 0.430549\\
-f_{0.25}(0.430549) = 0.435373\\
-f_{0.25}(0.435373) = 0.439549\\
-f_{0.25}(0.439549) = 0.443204\\
-f_{0.25}(0.443204) = 0.446429\\
-f_{0.25}(0.446429) = 0.449299\\
-</div>
-<br>
-This will never pass 2, so 0.25 is in the Mandelbrot Set.
-<br>
-This process can also be done to complex numbers.<br>
-<br>
-<div lang="latex">
-M(x) =$ the number of iterations required for $f_x$ to pass 2.$
-</div>
+ <div lang="latex">
+ \\
+ f_{0.25}(0) = 0^2+0.25 = 0.25\\
+ f_{0.25}(0.25) = 0.3125\\
+ f_{0.25}(0.3125) = 0.34765625\\
+ f_{0.25}(0.34765625) = 0.370864868\\
+ f_{0.25}(0.370864868) = 0.38754075\\
+ f_{0.25}(0.38754075) = 0.400187833\\
+ f_{0.25}(0.400187833) = 0.410150302\\
+ f_{0.25}(0.410150) = 0.418223\\
+ f_{0.25}(0.418223) = 0.424911\\
+ f_{0.25}(0.424911) = 0.430549\\
+ f_{0.25}(0.430549) = 0.435373\\
+ f_{0.25}(0.435373) = 0.439549\\
+ f_{0.25}(0.439549) = 0.443204\\
+ f_{0.25}(0.443204) = 0.446429\\
+ f_{0.25}(0.446429) = 0.449299\\
+ </div>
+ <br>
+ This will never pass 2, so 0.25 is in the Mandelbrot Set.
+ <br>
+ This process can also be done to complex numbers.<br>
+ <br>
+ <div lang="latex">
+ M(x) =$ the number of iterations required for $f_x$ to pass 2.$
+ </div>
-The website is just a 2d plot of M(x).
+ The website is just a 2d plot of M(x).
-</body>
+ </body>
</html>