#ifndef _MATH_H #define _MATH_H #include #define HUGE_VAL _INFINITY // glibc defines HUGE_VAL as infinity (the C standard only requires it to be positive, funnily enough) #define _NAN (-(_INFINITY-_INFINITY)) #define _PI 3.141592653589793 #define _2PI 6.283185307179586 #define _HALF_PI 1.5707963267948966 #define _THREE_HALVES_PI 4.71238898038469 // NOTE: these functions are not IEEE 754-compliant (the C standard doesn't require them to be), but they're pretty good double frexp(double value, int *exp) { if (value == 0) { *exp = 0; return 0; } unsigned long u = *(unsigned long *)&value, significand; *exp = ((u >> 52) & 0x7ff) - 1022; // replace exponent with 1022 u &= 0x800fffffffffffff; u |= 0x3fe0000000000000; return *(double *)&u; } double ldexp(double x, int exp) { int e; double y = frexp(x, &e); // since x = y * 2^e, x * 2^exp = y * 2^(e+exp) exp += e; if (exp < -1022) return 0; if (exp > 1023) return _INFINITY; unsigned long pow2 = (unsigned long)(exp + 1023) << 52; return y * *(double *)&pow2; } double floor(double x) { if (x >= 0.0) { if (x > 1073741824.0 * 1073741824.0) return x; // floats this big must be integers return (unsigned long)x; } else { if (x < -1073741824.0 * 1073741824.0) return x; // floats this big must be integers double i = (long)x; if (x == i) return x; return i - 1.0; } } double ceil(double x) { double f = floor(x); if (x == f) return f; return f + 1.; } double fabs(double x) { // this is better than x >= 0 ? x : -x because it deals with -0 properly unsigned long u = *(unsigned long *)&x; u &= 0x7fffffffffffffff; return *(double *)&u; } double fmod(double x, double y) { if (y == 0.0) { errno = EDOM; return 0.0; } return x - (floor(x / y) * y); } double _sin_taylor(double x) { double i; double term = x; // taylor expansion for sin: x - x³/3! + x⁵/5! - ... // https://en.wikipedia.org/wiki/Kahan_summation_algorithm double prev = -1.0; double sum = 0.0; double c = 0.0; for (i = 0.0; i < 100.0 && sum != prev; ++i) { prev = sum; double y = term - c; double t = sum + y; c = (t - sum) - y; sum = t; term *= -(x * x) / ((2.0*i+2.0)*(2.0*i+3.0)); } return sum; } double _cos_taylor(double x) { double i; double term = 1.0; // taylor expansion for cos: 1 - x²/2! + x⁴/4! - ... // https://en.wikipedia.org/wiki/Kahan_summation_algorithm double prev = -1.0; double sum = 0.0; double c = 0.0; for (i = 0.0; i < 100.0 && sum != prev; ++i) { prev = sum; double y = term - c; double t = sum + y; c = (t - sum) - y; sum = t; term *= -(x * x) / ((2.0*i+1.0)*(2.0*i+2.0)); } return sum; } double sin(double x) { x = fmod(x, 2.0*_PI); // the Taylor series works best for small inputs. so, provide _sin_taylor with a value in the range [0,π/2] if (x < _HALF_PI) return _sin_taylor(x); if (x < _PI) return _sin_taylor(_PI - x); if (x < _THREE_HALVES_PI) return -_sin_taylor(x - _PI); return -_sin_taylor(_2PI - x); } double cos(double x) { x = fmod(x, 2.0*_PI); // the Taylor series works best for small inputs. so, provide _cos_taylor with a value in the range [0,π/2] if (x < _HALF_PI) return _cos_taylor(x); if (x < _PI) return -_cos_taylor(_PI - x); if (x < _THREE_HALVES_PI) return -_cos_taylor(x - _PI); return _cos_taylor(_2PI - x); } double tan(double x) { return sin(x)/cos(x); } // for sqrt and the inverse trigonometric functions, we use Newton's method // https://en.wikipedia.org/wiki/Newton%27s_method double sqrt(double x) { if (x < 0.0) { errno = EDOM; return _NAN; } if (x == 0.0) return 0.0; if (x == _INFINITY) return _INFINITY; // we want to find the root of: f(t) = t² - x // f'(t) = 2t int exp; double y = frexp(x, &exp); if (exp & 1) { y *= 2; --exp; } // newton's method will be slow for very small or very large numbers. // so we have ensured that // 0.5 ≤ y < 2 // and also x = y * 2^exp; sqrt(x) = sqrt(y) * 2^(exp/2) NB: we've ensured that exp is even // 7 iterations seems to be more than enough for any number double t = y; t = (y / t + t) * 0.5; t = (y / t + t) * 0.5; t = (y / t + t) * 0.5; t = (y / t + t) * 0.5; t = (y / t + t) * 0.5; t = (y / t + t) * 0.5; t = (y / t + t) * 0.5; return ldexp(t, exp>>1); } double _acos_newton(double x) { // we want to find the root of: f(t) = cos(t) - x // f'(t) = -sin(t) double t = _HALF_PI - x; // reasonably good first approximation double prev_t = -100.0; int i; for (i = 0; i < 100 && prev_t != t; ++i) { prev_t = t; t += (cos(t) - x) / sin(t); } return t; } double _asin_newton(double x) { // we want to find the root of: f(t) = sin(t) - x // f'(t) = cos(t) double t = x; // reasonably good first approximation double prev_t = -100.0; int i; for (i = 0; i < 100 && prev_t != t; ++i) { prev_t = t; t += (x - sin(t)) / cos(t); } return t; } double acos(double x) { if (x > 1.0 || x < -1.0) { errno = EDOM; return _NAN; } // Newton's method doesn't work well near -1 and 1, because f(x) / f'(x) is very large. if (x > 0.8) return _asin_newton(sqrt(1-x*x)); if (x < -0.8) return _PI-_asin_newton(sqrt(1-x*x)); return _acos_newton(x); } double asin(double x) { if (x > 1.0 || x < -1.0) { errno = EDOM; return _NAN; } // Newton's method doesn't work well near -1 and 1, because f(x) / f'(x) is very large. if (x > 0.8) return _acos_newton(sqrt(1.0-x*x)); if (x < -0.8) return -_acos_newton(sqrt(1.0-x*x)); return _asin_newton(x); } double atan(double x) { // the formula below breaks for really large inputs; tan(10^20) as a double is indistinguishable from pi/2 anyways if (x > 1e20) return _HALF_PI; if (x < -1e20) return -_HALF_PI; // we can use a nice trigonometric identity here return asin(x / sqrt(1+x*x)); } double atan2(double y, double x) { if (x == 0.0) { if (y > 0.0) return _HALF_PI; if (y < 0.0) return -_HALF_PI; return 0.0; // this is what IEEE 754 does } double a = atan(y/x); if (x > 0.0) { return a; } else if (y > 0.0) { return a + _PI; } else { return a - _PI; } } double _exp_taylor(double x) { double i; double term = 1.0; // taylor expansion for exp: 1 + x/1! + x²/2! + ... // https://en.wikipedia.org/wiki/Kahan_summation_algorithm double prev = -1.0; double sum = 0.0; double c = 0.0; for (i = 1.0; i < 100.0 && sum != prev; ++i) { prev = sum; double y = term - c; double t = sum + y; c = (t - sum) - y; sum = t; term *= x / i; } return sum; } double exp(double x) { if (x > 709.782712893384) { errno = ERANGE; return _INFINITY; } if (x == 0.0) return 1; if (x < -744.4400719213812) return 0; int i, e; double y = frexp(x, &e); if (e < 1.0) return _exp_taylor(x); // the taylor series doesn't work well for large x (positive or negative), // so we use the fact that exp(y*2^e) = exp(y)^(2^e) double value = _exp_taylor(y); for (i = 0; i < e; ++i) value *= value; return value; } #define _LOG2 0.6931471805599453 double log(double x) { if (x < 0.0) { errno = EDOM; return _NAN; } if (x == 0.0) return -_INFINITY; if (x == 1.0) return 0.0; int e; double sum; double a = frexp(x, &e); // since x = a * 2^e, log(x) = log(a) + log(2^e) = log(a) + e log(2) sum = e * _LOG2; // now that a is in [1/2,1), the series log(a) = (a-1) - (a-1)²/2 + (a-1)³/3 - ... converges quickly a -= 1; // https://en.wikipedia.org/wiki/Kahan_summation_algorithm double prev = HUGE_VAL; double c = 0; double term = a; double i; for (i = 1.0; i < 100.0 && sum != prev; ++i) { prev = sum; double y = term / i - c; double t = sum + y; c = (t - sum) - y; sum = t; term *= -a; } return sum; } #define _INVLOG10 0.43429448190325176 // = 1/log(10) double log10(double x) { return log(x) * _INVLOG10; } double modf(double value, double *iptr) { double m = fmod(value, 1.0); if (value >= 0.0) { *iptr = value - m; return m; } else if (m == 0.0) { *iptr = value; return 0.0; } else { *iptr = value - m + 1.0; return m - 1.0; } } // double raised to the power of an integer double _dpowi(double x, unsigned long y) { double result = 1.0; if (y & 1) { --y; result *= x; } if (y > 0) { double p = _dpowi(x, y >> 1); result *= p * p; } return result; } double pow(double x, double y) { if (x > 0.0) { return exp(y * log(x)); } else if (x < 0.0) { if (fmod(y, 1.0) != 0) { errno = EDOM; return _NAN; } if (y > 1.6602069666338597e+19) return x < -1. ? -_INFINITY : 0.; if (y < -1.6602069666338597e+19) return x < -1. ? 0. : -_INFINITY; return _dpowi(x, (unsigned long)y); } else { if (y < 0) { errno = EDOM; return _NAN; } if (y > 0) { // 0^x = 0 for x>0 return 0.; } // 0^0 = 1 return 1.; } } double cosh(double x) { double e = exp(x); return (e + 1./e) * 0.5; } double sinh(double x) { double e = exp(x); return (e - 1./e) * 0.5; } double tanh(double x) { if (x > 20.0) return 1.; if (x < -20.0) return -1.; double e = exp(x); double f = 1./e; return (e - f) / (e + f); } #endif // _MATH_H