extern crate nalgebra; mod sdl; pub mod win; pub mod sdf; use nalgebra::{Vector3, Matrix3, Rotation3}; type Vec3 = Vector3; type Mat3 = Matrix3; type Rot3 = Rotation3; struct View { pos: Vec3, yaw: f32, pitch: f32 } impl Default for View { fn default() -> Self { Self { pos: Vec3::zeros(), yaw: 0.0, pitch: 0.0 } } } impl View { /// `camera_rotation() * vec3(0, 0, -1)` is the direction the camera is pointing fn camera_rotation(&self) -> Mat3 { *Rot3::from_euler_angles(self.pitch, self.yaw, 0.0).matrix() } } fn try_main() -> Result<(), String> { let my_sdf = sdf::Sdf::sphere(); let mut window = win::Window::new("AutoSDF", 1280, 720, true) .map_err(|e| format!("Error creating window: {e}"))?; let mut fshader_source = String::new(); fshader_source.push_str(" IN vec2 pos; uniform vec3 u_camera_position; uniform mat3 u_camera_rotation; "); my_sdf.to_glsl(&mut fshader_source); fshader_source.push_str(" #define ITERATIONS 30 #define AA_X 2 #define AA_Y 2 float fbm(vec3 p) { float t = 0.0; float freq = 24.0; mat3 m = mat3(cos(1.),sin(1.),0, -sin(1.),cos(1.),0, 0, 0, 1) * mat3( 1, 0, 0, 0, cos(1.),sin(1.), 0, -sin(1.),cos(1.) ); for(int i = 0; i < 5; i++) { p = m * p; t += pow(0.6, float(i)) * sin(freq*p.x)*sin(freq*p.y)*sin(freq*p.z); freq *= 2.0; } return t; } vec3 normal(vec3 p) { // thanks to https://iquilezles.org/articles/normalsSDF/ float h = 0.0001; vec2 k = vec2(1.,-1.); vec3 sdf_normal = k.xyy*sdf(p + k.xyy*h) + k.yyx*sdf(p + k.yyx*h) + k.yxy*sdf(p + k.yxy*h) + k.xxx*sdf(p + k.xxx*h); vec3 noise_normal = k.xyy*fbm(p + k.xyy*h) + k.yyx*fbm(p + k.yyx*h) + k.yxy*fbm(p + k.yxy*h) + k.xxx*fbm(p + k.xxx*h); return normalize(sdf_normal + 0.003 * noise_normal); } void main() { float focal_length = 0.3; float min_dist = 10.; vec2 inv_screen_size = 1.0 / vec2(1280.0, 720.0); // @TODO vec2 aa_delta = inv_screen_size / vec2(AA_X, AA_Y); vec3 final_color = vec3(0); for (int m = 0; m < AA_X; m++) { for (int n = 0; n < AA_Y; n++) { vec3 p = u_camera_position; vec2 aa_offset = vec2(float(m), float(n)) * aa_delta; vec3 delta = normalize(u_camera_rotation * vec3(pos + aa_offset, -focal_length)); int i; for (i = 0; i < ITERATIONS; i++) { float dist = sdf(p); min_dist = min(min_dist, dist); if (dist <= 0.01) { float L = 0.3 + max(0., dot(normal(p), normalize(vec3(.8,1,.6)))); final_color += L * vec3(1.0, 0.0, 0.0); break; } p += dist * delta; } } } final_color *= 1.0 / (AA_X * AA_Y); o_color = vec4(final_color, 1.0); }"); println!("{fshader_source}"); let program = window.create_program( "attribute vec2 v_pos; OUT vec2 pos; uniform float u_aspect_ratio; void main() { pos = v_pos * vec2(u_aspect_ratio, 1.0); gl_Position = vec4(v_pos, 0.0, 1.0); }", &fshader_source ).map_err(|e| format!("Error compiling shader:\n{e}"))?; let mut buffer = window.create_buffer(); let data: &[[f32; 2]] = &[ [-1.0, -1.0], [1.0, -1.0], [1.0, 1.0], [-1.0, -1.0], [1.0, 1.0], [-1.0, 1.0], ]; window.set_buffer_data(&mut buffer, data); let mut array = window.create_vertex_array(buffer, &program); window.array_attrib2f(&mut array, "v_pos", 0); let mut view = View::default(); 'mainloop: loop { while let Some(event) = window.next_event() { use win::Event::*; match event { Quit => break 'mainloop, _ => {}, } } window.viewport_full_screen(); view.yaw += 0.002; window.clear_screen(win::ColorF32::BLACK); window.use_program(&program); window.uniform1f("u_aspect_ratio", window.aspect_ratio()); window.uniform3f("u_camera_position", view.pos.x, view.pos.y, view.pos.z); window.uniform3x3f("u_camera_rotation", view.camera_rotation().as_slice()); window.draw_array(&array); window.swap(); } Ok(()) } fn main() { if let Err(e) = try_main() { win::display_error_message(&e); } }