\documentclass{article} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \newcommand\bb\mathbb \newcommand\ve\varepsilon \renewcommand\vec\textbf \renewcommand\l\left \renewcommand\r\right \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newcommand\pp[2]{\frac{\partial #1}{\partial #2}} \newcommand\dd[2]{\frac{d#1}{d#2}} \newcommand\transpose{^\top} \title{Randomly generating signed distance functions} \author{pommicket} \date{} \begin{document} \maketitle \section{introduction} In general, an $n$-dimensional {\em signed distance function} (SDF) is a function $f:\bb R^n\to\bb R$ representing the distance to a set $A$: for $\vec p\notin A$, $f(\vec p)$ is the distance from $\vec p$ to $A$. For $\vec p\in A$, $f(\vec p)$ is the negative of the distance from $\vec p$ to the boundary of $A$. This means that if $A$ is closed then $A = \{\vec x\in\bb R^n:f(\vec x)\leq 0\}$. (I'm not gonna go over the ray marching algorithm, there are better resources out there on the internet.) Ray marching doesn't need a {\em true} SDF, it still usually works for a function which just bounds the true SDF. From now on I'm just gonna use the term ``SDF'' for something that {\em can} be used with raymarching, not necessarily a true SDF. When generating random SDFs, we just want something that behaves nicely, and where we'll end up drawing the set $\{\vec x\in\bb R^n:f(\vec x) \leq 0\}$. \section{constraints on SDFs} Suppose we're doing ray marching starting from some point $\vec p$ and traveling in the direction $\vec d$. When designing an SDF $f$, what we want to avoid is the possibility that $f(\vec p)$ is too large, and so we ``skip'' over the object when moving from $\vec p$ to $\vec p + f(\vec p) \vec d$. Specifically, we have the following requirement: For all $\vec p,\vec d\in \bb R^n$ with $||\vec d||=1$ and $f(\vec p)\geq 0$, and for any point $\vec x$ on the line segment between $\vec p$ and $\vec p + f(\vec p) \vec d$, $f(\vec x) \leq 0$. This is equivalent to saying that for any two points $\vec x,\vec y$, \begin{equation*} \tag{1} f(\vec x)\geq ||\vec x-\vec y|| \implies f(\vec y) \geq 0 \end{equation*} But this property is a bit annoying to deal with so we'll instead use ``1-Lipschitz continuity'', $$|f(\vec x) - f(\vec y)| \leq ||\vec x - \vec y||~~~\forall \vec x,\vec y\in\bb R^3$$ If $f$ is 1-Lipschitz, then $f$ satisfies (1), since in particular $$f(\vec y) \geq f(\vec x) - ||\vec x-\vec y||$$ In general an arbitrary function $g:A \to\bb R^n$ is $K$-Lipschitz if for all $\vec x,\vec y\in A$, $$||g(\vec x) - g(\vec y)|| \leq K||\vec x-\vec y||$$ (This last definition is useful for us since if $g$ is $K$-Lipschitz then $x\mapsto g(x)/K$ and $x\mapsto g(x/K)$ are 1-Lipschitz.) And any {\em true} SDF $f$ (i.e. $f$ actually represents the distance to an object) is 1-Lipschitz, since the difference between the distance from $\vec x$ to the object and the distance from $\vec y$ to the object should be at most the distance between $\vec x$ and $\vec y$ (triangle inequality). Still, it's hard to say whether any particular function is 1-Lipschitz. The following characterization is useful for this: \begin{theorem} \label{diff-lipschitz} Let $f:A\to\bb R^n$ be differentiable for $A\subseteq \bb R^m$ open and convex. If $||Df(\vec x)||\leq K$ then $f$ is $K$-Lipschitz.\footnote{Here $||\cdot||$ is the operator norm, $||M|| = \max_{\vec u} \frac{||M\vec u||}{||\vec u||}$.} The converse is also true if $f$ is $C^1$. \begin{proof} ($\implies$) Suppose $f$ is not $K$-Lipschitz, i.e. there exist $\vec x,\vec y\in A$ such that $||f(\vec x)-f(\vec y)|| > K ||\vec x-\vec y||$. By the mean value theorem there is a point $\vec c$ on the line segment between $\vec x$ and $\vec y$ such that $$Df(\vec c)\cdot (\vec x-\vec y) = f(\vec x) - f(\vec y)$$ So $$||Df(\vec c)|| \geq \frac{||f(\vec x) - f(\vec y)||}{||\vec x-\vec y||} > K$$ ($\impliedby$) Now suppose $f$ is $C^1$ and $||Df(\vec x)|| > K$. Let $||\vec r|| = 1$ with $Df(\vec x)\cdot \vec r > K$. Since $f$ is $C^1$ there is a closed ball $B(\vec x;\ve)$ around $\vec x$ such that $Df(\vec a)\cdot \vec r > K$ for all $\vec a\in B(\vec x;\ve)$. By the mean value theorem there exists $\vec c$ on the line segment between $\vec x$ and $\vec x+\ve\vec r$ such that $$Df(\vec c)\cdot (\ve\vec r) = f(\vec x+\ve\vec r) - f(\vec x)$$ $$\ve (Df(\vec c)\cdot \vec r) = f(\vec x+\ve\vec r) - f(\vec x)$$ $$K\ve < f(\vec x+\ve\vec r) - f(\vec x)$$ and so $f$ is not $K$-Lipschitz. \end{proof} \end{theorem} (It might seem weird to talk about general functions from $\bb R^m$ to $\bb R^n$ since raymarching basically only deals with SDFs from $\bb R^3$ to $\bb R$, but this will be useful, for example when creating SDFs by composing functions.) The normal definition of the operator norm doesn't really help us calculate it (it's a pain to consider all $\vec u$ with $||\vec u|| = 1$). Helpfully, wikipedia tells us that $||M||$ is the square root of the largest eigenvalue of $M\transpose M$. This is especially nice for functions $f:\bb R^n\to \bb R$, since $Df$ is just the transpose of the ``gradient'' vector $$\nabla f = \begin{pmatrix} \pp f{x_1}\\ \pp f{x_2}\\\cdots\\\pp f{x_n} \end{pmatrix}$$ So $$(Df)(Df)^T = \sum_{i=1}^n (\nabla f)_i^2 = ||\nabla f||^2$$ So in fact $$||Df|| = ||\nabla f||.$$ This gives us a very easy way of determining $||Df(\vec x)||$: just compute each of the partial derivatives, and take the square root of the sum of their squares. Finding the total derivative $Df$ can be annoying (requires finding $n^2$ partial derivatives), so it's nice to have some tools to reduce the dimension of the domain/codomain of $f$: \begin{theorem} \label{component-wise} If $f:\bb R^n\to\bb R^n$, $f(\vec x) = (f_1(x_1) , f_2(x_2), \dots, f_n(x_n))$ and $f_i:\bb R\to\bb R$ is $K$-Lipschitz for all $i$ then $f$ is $K$-Lipschitz. \begin{proof} \begin{align*} ||f(\vec x) - f(\vec y)||^2 &= \sum_{i=1}^n (f_i(x_i) - f_i(y_i))^2\\ &\leq \sum_{i=1}^n (K|x_i - y_i|)^2\\ &= K^2\sum_{i=1}^n (x_i - y_i)^2\\ &= K^2||\vec x - \vec y||^2 \end{align*} \end{proof} \end{theorem} \begin{theorem} \label{dim-reduction} Let $f:\bb R^m\to\bb R^n$. $f$ is $K$-Lipschitz if and only if the function $g_{\vec p,\vec u}:\bb R\to\bb R^n, g_{\vec p,\vec u}(x) = f(\vec p + x \vec u)$ is $K$-Lipschitz for all $\vec p,\vec u\in\bb R^n,||\vec u||=1$. \begin{proof} $(\implies)$ \begin{align*} ||g_{\vec p,\vec u}(x) - g_{\vec p,\vec u}(y)|| &= ||f(\vec p + x\vec u) - f(\vec p + y\vec u)||\\ &\leq K||(\vec p + x\vec u) - (\vec p + y\vec u)||\\ &= K|x-y| \end{align*} $(\impliedby)$ Let $\vec x,\vec y\in\bb R^m$. Let $\vec u = \frac{\vec y-\vec x}{||\vec y-\vec x||}$. \begin{align*} ||f(\vec x)-f(\vec y)|| &= ||f(\vec x) - f(\vec x + ||\vec y-\vec x||\vec u)||\\ &= ||g_{\vec x,\vec u}(0) - g_{\vec x,\vec u}(||\vec y-\vec x||)||\\ &\leq K||\vec y-\vec x|| \end{align*} \end{proof} \end{theorem} % here is a lemma which i didnt end up using % \begin{lemma} % \label{x-y-delta} % Let $f:\bb R^m\to\bb R^n$ be continuous. % If for all $\vec x,\vec y\in\bb R^m,\delta > 0$ there exist % $\vec a\in B(\vec x;\delta),\vec b\in B(\vec y;\delta)$ such that % $||f(\vec a)-f(\vec b)|| < K||\vec a-\vec b||$, then $f$ is $K$-Lipschitz. % \begin{proof} % Let $\ve > 0$, and select $\delta<\ve/K$ such that $f$ varies by less than $\ve$ in both % $B(\vec x;\delta)$ and $B(\vec y;\delta)$. Take $\vec a,\vec b$ as given by our assumption, then % \begin{align*} % ||f(\vec x)-f(\vec y)|| &\leq ||f(\vec x) - f(\vec a)|| + ||f(\vec a) - f(\vec b)|| + ||f(\vec b) - f(\vec y)||\\ % &\leq \ve + K||\vec a-\vec b|| + \ve\\ % &\leq 2\ve + K(||\vec a - \vec x|| + ||\vec x - \vec y|| + ||\vec y-\vec b||)\\ % &\leq 2\ve + K(2\delta + ||\vec x - \vec y||)\\ % &< 4\ve + K||\vec x-\vec y|| % \end{align*} % The $4\ve$ term can be made arbitrarily small, so $||f(\vec x)-f(\vec y)|| \leq K||\vec x-\vec y||$. % \end{proof} % \end{lemma} \section{examples of 1-Lipschitz functions} \begin{itemize} \item $f:\bb R^n\to \bb R$, $f(\vec x) = ||\vec x||$. \item $f:\bb R^n\to \bb R^n$, $f(\vec x) = \vec x + \vec p$ for any fixed $\vec p\in\bb R^n$. \item $f:\bb R^n\to \bb R^n$, $f(\vec x) = (|x_1|,\dots,|x_n|)$. This one isn't differentiable. \item $f:\bb R^n\to\bb R^n$, $f(\vec x) = (\sin x_1,\dots,\sin x_n)$ --- by Theorem \ref{diff-lipschitz}, $\sin:\bb R\to\bb R$ is 1-Lipschitz so by Theorem \ref{component-wise}, $f$ is 1-Lipschitz. \item Any isometry. \end{itemize} \section{basic closure properties} To procedurally generate 1-Lipschitz functions, we need rules about how to combine 1-Lipschitz functions to produce new 1-Lipschitz functions. One such rule is: \begin{theorem} \label{composition} If $f : \bb R^m \to \bb R^n$ is $K$-Lipschitz and $g:\bb R^n\to\bb R^l$ is $L$-Lipschitz then $f\circ g:\bb R^m\to\bb R^l$ is $KL$-Lipschitz. \begin{proof} Let $\vec x,\vec y\in\bb R^m$. $$||f(g(\vec x)) - f(g(\vec y))|| \leq K||g(\vec x) - g(\vec y)|| \leq KL||\vec x - \vec y||$$ \end{proof} \end{theorem} \begin{theorem} \label{mixing} If $f : \bb R^m \to \bb R^n,g:\bb R^m\to\bb R^n$ are 1-Lipschitz and $t\in[0,1]$ then $h(\vec x) = tf(\vec x) + (1-t)g(\vec x)$ is 1-Lipschitz. \begin{proof} Let $\vec x,\vec y\in\bb R^n$. \begin{align*} ||h(\vec x) - h(\vec y)|| &= ||tf(\vec x) + (1-t)g(\vec x) - tf(\vec y) - (1-t)g(\vec y)||\\ &= ||t(f(\vec x) - f(\vec y)) + (1-t)(g(\vec x) - g(\vec y))||\\ &\leq t||f(\vec x) - f(\vec y)|| + (1-t)||g(\vec x) - g(\vec y)||\\ &\leq t + 1 - t = 1 \end{align*} \end{proof} \end{theorem} \begin{theorem} \label{minmax} If $f,g:\bb R^m\to\bb R$ are 1-Lipschitz then $$\vec x\mapsto \min\{f(\vec x),g(\vec x)\},~~\vec x\mapsto \max\{f(\vec x),g(\vec x)\}$$ are too. \begin{proof} \begin{align*} |h(\vec x)-h(\vec y)| &= | \min\{f(\vec x),g(\vec x)\} - \min\{f(\vec y),g(\vec y)\}| \end{align*} $\max$ follows from $\max\{a,b\} = -\min\{-a,-b\}$ (negating a 1-Lipschitz function gives a 1-Lipschitz function). \end{proof} \end{theorem} \section{products?} Unfortunately given differentiable 1-Lipschitz functions $f,g$, the product function $x\mapsto f(x)g(x)$ is not necessarily Lipschitz continuous. However we can define a modified product which does preserve 1-Lipschitz continuity. Given $f,g:\bb R^n \to \bb R$ 1-Lipschitz and differentiable, define $$h(\vec x) = \sin (f(\vec x))\cos(g(\vec x))$$ Clearly $h$ is also differentiable, we will show that it is 1-Lipschitz. $$\pp h{x_i} = \cos(f(\vec x))\cos(g(\vec x)) \pp{f(\vec x)}{x_i}- \sin(f(\vec x))\sin(g(\vec x)) \pp{g(\vec x)}{x_i}$$ so letting $f(\vec x) = a,~g(\vec x)= b,~p = \cos a\cos b,~q = \sin a\sin b,~\pp{f(\vec x)}{x_i} = s_i,~\pp{g(\vec x)}{x_i} = t_i$, we have \begin{align*} ||Dh(\vec x)||^2 &= \sum_{i=1}^n \left[ps_i - qt_i\right]^2\\ &=p^2\l(\sum_{i=1}^n s_i^2\r) + q^2\l(\sum_{i=1}^n t_i^2\r)- 2pq\l(\sum_{i=1}^n s_it_i\r)\\ &=p^2||\vec s|| + q^2||\vec t||- 2pq(\vec s\cdot \vec t)\\ &\leq p^2||\vec s|| + q^2||\vec t||+ 2pq||\vec s||\,||\vec t||\\ \intertext{Note that $\vec s = Df(\vec x)^T,\vec t=Df(\vec x)^T$ and so $||\vec s||,||\vec t|| \leq 1$:} &\leq p^2 + q^2 + 2pq\\ &= (p+q)^2\\ &= (\cos a\cos b + \sin a\sin b)^2\\ &= \cos^2(a-b) \leq 1 \end{align*} And this bound is as strict as possible: we can definitely imagine $f,g$ satisfying $f(\vec x) = 0,g(\vec x)=\pi/2, Df(\vec x)\cdot Dg(\vec x) = -1$ for example (you can verify that this makes $||Dh(\vec x)|| = 1$). % i don't know about this section % it's pretty long and maybe not very helpful % \section{twisty function} % One function which might look interesting is % $$f(x,y,z) =(x\cos(\theta(z)) + y\sin(\theta(z)), y\cos(\theta(z)) - x\sin(\theta(z)), z)$$ % where $\theta:\bb R\to\bb R$ is some function. % This can only work for $(x,y)$ bounded: % we want $\theta$ to only be dependent on $z$, since we want the plane $z=c$ to be rotated % all by the same angle, but then taking $(x,y)$ large enough, moving $z$ up by a tiny bit will drastically % change $x,y$. % So let's take $||(x,y)|| \leq 1$ for now. % We'll abbreviate $\theta(z)$ as just $\theta$. % % $$f(x,y,z) =(x\cos\theta + y\sin\theta, y\cos\theta - x\sin\theta, z)$$ % $$\frac{\partial f_1}{\partial x} = \cos\theta$$ % $$\frac{\partial f_1}{\partial y} = \sin\theta$$ % \begin{align*} % \frac{\partial f_1}{\partial z} &= -x\sin\theta\dd4\theta z + y\cos\theta\dd\theta z\\ % &= u\theta'~~~~~\text{where $u=-x\sin\theta + y\cos\theta$} % \end{align*} % $$\frac{\partial f_2}{\partial x} = -\sin\theta$$ % $$\frac{\partial f_2}{\partial y} = \cos\theta$$ % \begin{align*} % \frac{\partial f_2}{\partial z} &= -y\sin\theta\pp\theta z - x\cos\theta\pp\theta z\\ % &= v\theta'~~~~\text{where $v=-x\cos\theta - y\sin\theta$} % \end{align*} % Of course $\pp {f_3} x=\pp{f_3}y=0,\pp{f_3}z=1$. This gives us the derivative % $$Df = \begin{pmatrix} % \cos\theta&\sin\theta&u\theta'\\ % -\sin\theta&\cos\theta&v\theta'\\ % 0&0&1 % \end{pmatrix}$$ % $$(Df)(r,s,t) = \begin{pmatrix} % r\cos\theta + s\sin\theta + u\theta't\\ % s\cos\theta - r\sin\theta + v\theta't\\ % t % \end{pmatrix}$$ % \begin{align*} % ||(Df)(r,s,t)||^2 &= % (r\cos\theta)^2 + (s\sin\theta)^2 + (u\theta't)^2\\ % &~~+ 2rs\cos\theta\sin\theta + 2rtu\theta'\cos\theta % + 2stu\theta'\sin\theta\\ % &~~+(s\cos\theta)^2 + (-r\sin\theta)^2 + (v\theta't)^2\\ % &~~- 2rs\cos\theta\sin\theta + 2stv\theta'\cos\theta % - 2rtv\theta'\sin\theta + t^2\\ % &= (r^2+s^2)(\cos^2\theta + \sin^2\theta) + (u^2+v^2)(\theta't)^2\\ % &~~+2t\theta'((ru+sv)\cos\theta + (su-rv)\sin\theta)\\ % &= ||(r,s)||^2 + ||(u,v)||^2 % + 2t\theta'((ru+sv)\cos\theta + (su-rv)\sin\theta) + t^2 % \end{align*} % Now let's take $||(r,s,t)||,||(u,v)||\leq 1$. Note % that $ru+sv = (r,s)\cdot (u,v) \leq ||(r,s)||$ and likewise % $su-rv\leq ||(s,-r)||=||(r,s)||$. So then % \begin{align*} % ||(Df)(r,s,t)||^2 &\leq 2 + 2\theta't||(r,s)||(\cos\theta + \sin\theta) + t^2\\ % &\leq2 + 2\theta't||(r,s)||\sqrt2 + t^2\\ % \end{align*} % {\Large\bf TODO} % \end{document}